Обзор экспериментов по поиску Темной Материи Д.Ю. Акимов ИТЭФ

27 марта 2012 г., ИЯИ РАН, Москва

Содержание доклада

Мотивация поиска Темной Материи

≻Регистрация WIMP

>Эксперименты:

DAMA/LIBRA; DM-Ice; CoGeNT; CRESST; COUPP

Детекторы на жидких благородных газах: ZEPLIN-III; Xenon100; LUX; Darkside-50; XMASS; LZ; MAX; РЭД

Сегодня свидетельства в пользу существования Темной Материи намного сильнее, чем когда-либо!

Астрофизическая мотивация Кривые вращения спиральных галактик

Гравитационное линзирование скоплениями галактик

Космологическая мотивация

Крупномасштабная структура Вселенной

Анизотропия реликтового излучения (СМВ)

N-body симуляция

Замечательное согласие выводов по CMB and SN Ia

Теория нуклеосинтеза

Современная космологическая модель

$$\rho \approx \rho_{cr} \Rightarrow$$

$$Ω = ρ/ρcr ≈ 1$$

Астрофизические свидетельства

Что же наблюдается на галактических масштабах?

Астрофизические свидетельства

200

Для объяснения такого поведения кривых необходимо количество гравитирующей материи в ~10 раз превышающее количество видимой!

Астрофизические свидетельства

Гравитационное линзирование

Также требуется на порядок величины большая масса

Космологическая мотивация

Крупномасштабн ая структура Вселенной, реконструирован ная из измерений красного смещения объектов

Результат N-body симуляции, проведенный на суперкомпьютерах

Главный результат симуляции – Темная Материя должна быть холодной (нерелятивистской)

Теория Суперсимметрии SUSY предоставляет нам новый класс частиц. *Нейтралино – наиболее вероятный кандидат е WIMP - (Weakly Interacting Massive Particles)* Диапазон масс от неск. дес. до неск. сотен ГэВ

Местная галактическая плотность ~ 0.3 ГэВ/см³ ~неск. частиц в литре!

Прямое детектирование

$$\frac{dn_{w}}{dv} = 4\pi \left(\frac{1}{\pi v_{0}^{2}}\right)^{\frac{3}{2}} v^{2} \exp\left(-\frac{v^{2}}{v_{0}^{2}}\right)$$

$$\frac{dN}{dE} = \frac{\rho}{M_{\chi}} \sigma N_N \frac{M_N c^2}{4m_{\rm red}^2 V_0} \frac{g(\eta, E)}{\eta} F_N^2(E))$$

$$g(\eta, E) = \begin{cases} \operatorname{erf}(\xi + \eta) - \operatorname{erf}(\xi - \eta) - \frac{4}{\sqrt{\pi}} \eta e^{-z^2} \\ \xi \le z - \eta \\ \operatorname{erf}(z) - \operatorname{erf}(\xi - \eta) - \frac{2}{\sqrt{\pi}} (z + \eta - \xi) \eta e^{-z^2} \\ z - \eta \le \xi \le z + \eta \\ 0, \qquad \xi \ge z + \eta , \end{cases}$$

 M_{χ} , M_N и $m_{\rm red}$ – masses of WIMP and target nucleus, and their reduced mass, respectively;

$$\xi_i = \sqrt{\frac{M_i E_i}{2m_{\rm red}^2 V_0^2}} \qquad \eta = \frac{V_{Earth}}{V_0} \qquad z = \frac{V_{escape}}{V_0}$$

 $v_{Earth} = 232$ km/s – Earth velocity, $v_0 = \sqrt{\frac{2}{3}} v_{r.m.s.}$ – Quasi-Maxwell distribution parameter, N_N – number of target nuclei,

 $\rho = 0.3 \text{ GeV/cm}^3 - \text{WIMP}$ density in Galactic halo,

 σ –WIMP interaction cross-section,

 $\overline{F_N^2}(E)$ – nuclear form factor

Прямое детектирование

of bckg of various origins.

Годичная модуляция

60° Sun 232 km/s Earth 30 km/s

Ожидаемая вариация темпа счета WIMP ~ 5%

(с максимумом 2 го июня)

Эксперименты

Experiment	Target		
ANAIS	NaI	Experiment	Taraet
DAMA/NaI	NaI		
DAMA/LIBRA	NaI		L Xe
DAMA/1 ton	NaI		LAn
NAIAD	NaI	XENON 10	
HDMS	Ge	XENON 100	LXe
KIMS	CsI	Zoplin T	
Caf2-Kamioka	CaF2	Zeplin I Zaplin II	LXe
CDMS	Ge	Zeplin II Zaplin III	LXe
CRESST	CaWO4		LAN
EDELWEISS	Ge		
EURECA	Ge		LXe
CoGeNT	Ge		LXe LXe/LAn
ROSEBUD	Ge, sapphire	CLEAN	LAP/LAP
COUPP	FSH		LINE
PICASSO	FSH	YMASS	
SIMPLE	FSH		340.005
NEWAGE	CF4	MIMAC	She yas
DM-TPC	CF4		
Drift	CS2		
MIMAC	3He gas		

DM Direct Search Progress Over Time (2011/12)

DAMA/LIBRA

Total exposure ~1.17 t∙y

arXiv:1002.1028v1 [astro-ph.GA] Deviation of the count rate from the mean value (2 - 6 keV only) during the whole exposure time on both setups DAMA and LIBRA

A·cos $w(t - t_0)$ with a period T = $2\pi/w = 0.999 \pm 0.002$ y, and a phase $t_0 = 146 \pm 7$ day, which is very close to the expected: 152,5 days (2 June)

A=(0.0114±0.0013) event/kg/keV/day, C.L. = 8.8σ

DAMA/LIBRA

DM-Ice

250 - 500 kg Nal(Tl)

DM-Ice-17: First Step

Detectors:

 Two 8.5 kg Nal detectors from NAIAD (17 kg total)

Goals:

- Assess the feasibility of deploying Nal(TI) crystals in the Antarctic Ice for a dark matter detector
- Establish the radiopurity of the antarctic ice / hole ice
- Explore the capability of IceCube to veto muons

Installed Dec. 2010

.

CoGeNT

In Soudan mine 2,100 m.w.e., Dark Matter run:

"Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector"

arXiv:1106.0650 [astro-ph.CO]

CRESST

18 modules analysis from 8 modules

1- - - .5-			
		α	ر د
0	**************************************	·	/
0 20 40	60 80 100 Enerav [keV]	120 140	
	M1	M2	
e/γ events	8.00 ± 0.05	8.00 ± 0.05	
α events	$11.5^{+2.6}_{-2.3}$	$11.2_{-2.3}^{+2.5}$	
neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$	
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$	
signal events	29.4 ^{+8.6}	$24.2_{-7.2}^{+8.1}$	
m_{χ} [GeV]	25.3	11.6	
$\sigma_{_{ m WN}}$ [pb]	1.6.10-6	3.7·10 ⁻⁵	

CRESST

The COUPP program

- COUPP-4: A 2-liter chamber shallow site in 2009, at SNOLAB since September, 2010
- COUPP-60: A 30-liter chamber commissioning at Fermilab, goal is to move to SNOLAB within a year

COUPP-4

COUPP-60

COUPP2L SNOLAB Results

>99.3% alpha rejection (15 keV threshold)

20 WIMP candidates

- (0.11,0.09,0.03) ev/kg/day above (8, 11, 16) keV
- Expect ~0.01 ev/kg/day from identified neutron sources
- AP is a measure of acoustic energy
- A(T) temperature correction
- G_j gain correction for jth acoustic sensor
- C_n(x) position correction for nth frequency range
- psd power spectral density with bin center frequency f

Детекторы на жидких благородных газах

Детекторы на жидких благородных газах

Liquid noble gases are increasingly used as a detection medium for WIMPs

very low contamination by U/Th, K
 (can be easily purified by filtering)

 possibility of discrimination by simultaneous measurements of scintillation and ionization signals in a two-phase mode

 possibility to build large and even very large (ton-scale) detectors

•3D position sensitivity => "WALL-LESS" detector!!!

For total mass of >3t, reduction of bckg > 10³

Детекторы на жидких благородных газах

Discrimination of particles in a two-phase detector (Xe)

ZEPLIN III (two-phase)

CCLRC Rutherford Appleton Laboratory

University of Edinburgh

ITEP

Boulby, U.K. site ('Palmer lab') 1100m, 2.8km water equiv. 10⁶ reduction in muon flux

ZEPLIN III

Дизайн разработан в ИТЭФ

ZEPLIN III

WIMP mass, GeV/c^2

Xenon100

150 kg total (70 kg in target)

Dark Matter Results from 100 Live Days of XENON100 Data. Phys.Rev.Lett.107:131302,2011. e-Print: arXiv:1104.2549 [astro-ph.CO]

10² WIMP mass, GeV/c²

 10^{3}

ZEPLIN-(III

10

10

LUX

Large Underground Xenon detector

SUSEL - at Homestake; South Dakota

350 kg total (150 kg in target) Large water shield Cherenkov readout – muon veto. 10-month exposition

Darkside-50 @ LNGS

Depleted Argon Cryostat for Scintillation and Ionization Detection

Experiments: XMASS

LZ

LZS@SUSEL - Sanford Underground Science and Engineering Lab. 4850 feet LZD@DUSEL - Deep Underground Science and Engineering Lab. 8000 feet

After multi-hit cut and S2/S1 cut

MAX – G2 Detector

MAX – G3 Detector

Заключение

•Имеются очень сильные свидетельства существования Темной Материи.

•Эксперименты по прямому детектированию идут полным ходом.

•Благодаря прогрессу в технологиях, с начала экспериментов по настоящее время фон в установках уменьшен почти на 6 порядков величины!

•Супердетекторы (с массой более тонны) пройдут практически весь диапазон предсказаний SUSY.