Поиск эффектов за рамками Стандартной Модели в процессах одиночного рождения t-кварка в эксперименте D0 на коллайдере TEVATRON

Максим Перфилов

по материалам кандидатской диссертации

науч. руководители д.ф.-м.н. Боос Э.Э, к. ф.-м.н. Дудко Л.В. Семинар ОФВЭ ИЯИ РАН,, 28.03.2011

Поиск отклонений от СМ: топ-кварк в Стандартной Модели

Поиск отклонений от СМ: особые свойства топ-кварка

Поиск отклонений от СМ: Тэватрон; CDF и D0 детекторы

ТЭВАТРОН протон-антипротонный ускоритель на встречный пучках √s = 1960 ГэВ

D0-детектор: анализ данных, собранных с лета 2002 по лето 2007

Поиск отклонений от СМ

Поиск отклонений от СМ: процессы

Поиск отклонений от СМ: направления D0 исследований

«Search for single top quark production...» Phys. Lett. B 622, 265 (2005) - верхние пределы для сечений рождения одиночного топ-кварка: 6.4 pb (s-канал), 5.0 pb (t-канал) «Evidence for production of single top quarks...» Phys. Lett. B 98, 18 (2007) - сечение рождения: 4.9 +/- 1.4 pb «Observation of Single Top Quark Production» Phys.Rev.Lett. 103:092001(2009) - сечение рождения 3.98 +/- 0.88 CM ungunuumumumu Отклонения от Стандартной Модели: Модификация предсказываемых СМ констант связи топ-кварка Новые частицы с другими частицами в процессах рождения одиночного топ-кварка **FCNC** Аномальные операторы в Wtb вершине W' H+

Поиск отклонений от СМ: W ' и предыдущие результаты

дополнительный массивный векторный бозон models of **Universal Extra Dimensions** Left-Right symmetric models **Technicolor models** top-flavor models Экспериментальные ограничения на массу W ': M_W , > M_V , M_W , > 786 ГэВ -лептонный канал: (Affolder et al, Phys Rev Lett. 87, 231803 (2001)) - кварковый канал: $M_{W^{\,\prime}} < M_{_{V_{\,P}}} \quad M_{_{W^{\,\prime}}} > 800 \; \Gamma$ эВ (Abazov et al, Phys Rev Rev D 69, 111101 (2004)) - канал $W' \rightarrow t b : M_{W'} > 536 \, GeV \, npu \, M_{W'} > M_{v_R}$ $M_{W'} > 566 \, GeV \, npu \, M_{W'} < M_{V_p}$ (D. Acosta et al, Phys. Rev. Lett 90, 081802 (2003)) - предполагается та или иная структура вершины взаимодействия W' с фермионами 8

Поиск отклонений от СМ: лагранжиан и интерференция

Эффективный лагранжиан взаимодействия W' с фермионами

$$L_{q_iq_jW'} = \frac{V_{q_iq_j}}{2\sqrt{2}} g_W \bar{q}_i \gamma_\mu [a_{q_iq_j}^R (1+\gamma_5) + a_{q_iq_j}^L (1-\gamma_5)] W' q_j + \Im.C.$$

$$a_{q_iq_j}^R (1-\gamma_5) W' q_j + \Im.C.$$

Процесс s-канального рождения топ-кварка с участием W ' :

- интерференция между W-бозоном Стандартной Модели и W' в s-канале !

Поиск отклонений от СМ: матричный элемент

Поиск отклонений от СМ: вклад интерференции

$M_{W'}, [\text{GeV}]$	SM+leftW'			SM+rig	ght W'
	$\sigma_{tot}, [pb]$	IT, [pb]	%	$\sigma_{tot}, [pb]$	IT, [pb]
500	2.12660	-0.26399	12.36	2.3905	0
600	0.84553	-0.17941	21.22	1.0236	0
700	0.39600	-0.12185	30.77	0.5244	0
800	0.25584	-0.08550	33.42	0.3414	0
900	0.20500	-0.06256	30.52	0.2747	0
1000	0.20233	-0.04763	23.54	0.2500	0

Сечения одиночного рождения топ-кварка в s-канале в присутствии дополнительного заряженного векторного бозона W' и вклад интерференции между W' и W-бозоном стандартной модели.

Поиск отклонений от СМ: W ' - распределения и моделирование

Поиск отклонений от СМ: W ' - первый анализ

Первый поиск W'

- лето 2006 года, D0 данные, соответствующие 230pb⁻¹
- Монте-Карло: генератор СОМРНЕР
 - 50000 событий для масс W' 600, 650,...,900 ГэВ
 - для разных сценариев взаимодействия W' с фермионами

(левые токи, правые токи)

- корректный учёт интерференции W' и W для левых токов
- учитывалась возможность распада W' на \mathbf{I} , $v_{\mathbf{R}}$
- МК-моделирование фонов, отбор событий
 - W+cmpyu, WZ, WW, Z+cmpyu
 - t-канальный процесс рождения одиночного топ-кварка
 - изолированный лептон; хотя бы одна b-струя...

Поиск отклонений от СМ: W ' - детали первого анализа

 поведение данных согласуется с предсказаниями фоновой модели с учётом неопределённостей

Семинар ОФВЭ ИЯИ РАН, 28.03.2011

14

Поиск отклонений от СМ: W ' - результаты

Байесовский подход: сечения как функции массы W' (95% C.L.) W' (SM-like) (левые токи) W' (правые токи)

Результаты — пределы на массу W ': W'(левые токи) : $M_{W'} > 610 \ \Gamma \Rightarrow B$ W'(правые токи) : $M_{W'} > 630 \ \Gamma \Rightarrow B$ ($M_{W'} > M_{\nu_R}$) W'(правые токи) : $M_{W'} > 670 \ \Gamma \Rightarrow B$ ($M_{W'} < M_{\nu_R}$)

Семинар ОФВЭ ИЯИ РАН, 28.03.2011

15

Второй поиск W'

- 2007-2008 гг., D0 данные, соответствующие 900pb⁻¹
- заново созданные МК-события (СОМРНЕР)
 - 150тыс. для масс W' = 600....1100 ; 50тыс. для масс W' = 650...1050
- подобные основные критерии отбора событий и моделирования фонов, как и в D0 Runll публикации (2007) по открытию одиночного топ-кварка

- исключались события с $\sqrt{s} > 400 \, \Gamma$ эВ

дополнительно поставлены пределы на параметры связи W'
 с фермионами

Поиск отклонений от СМ: W ' - детали второго анализа

- поведение данных согласуется с предсказаниями фоновой модели

Поиск отклонений от СМ: W ' - результаты второго анализа

$$W'(правые токи)$$
: $M_{W'} > 768 \ \Gamma
ightarrow B (M_{W'} < M_{\nu_R})$
и ограничения на параметры связи W' с фермионами для
«правого» W': $a^R < 0.72 \ (M_{W'} > M_{\nu_R}), a^R < 0.68 \ (M_{W'} < M_{\nu_R})$

Поиск отклонений от СМ: FCNC

Нейтральные токи, меняющие аромат кварков (FCNC)

Flavor Changing Neutral Currents меняют аромат кварков без изменения их зарядов

модели, в которых топкварк является составным объектом

модели с новыми динамическими взаимодействиями топ-кварка модели с многими Хигссовскими дублетами, такие, как SUSY

Поиск отклонений от СМ: FCNC (фотоны, Z)

- FCNC посредством фотонов и Z-бозонов:
 - CDF constraints (95% CL):

- L3 (LEP) direct constraints on FCNC parameters: $k_{\gamma,Z} < 0.4$ (*Phys. Lett. B459, 290 (2002*))
 - ZEUS (HERA) constraints (95% CL): $k_{\gamma} < 0.174$ (*Phys. Lett. B559, 153 (2004*))
 - CDF recent constraints (95% CL): $B(t \rightarrow Zq) < 3.7\%$ (*Phys. Rev. Lett. 101, 192002 (2008)*)

Поиск отклонений от СМ: FCNC

FCNC посредством глюонов

ū.c

g

Дополнительное к СМ взаимодействие :

$$\mathbf{L}_{add} = \frac{\mathbf{k}_{f}}{\Lambda} \mathbf{g}_{s} \,\overline{\mathbf{f}} \,\sigma^{\mu\nu} \frac{\lambda^{a}}{2} \,\mathbf{t} \,\mathbf{G}_{\mu\nu}^{a}$$

f: либо u, либо c-кварк
k_f – величина аномальных FCNC параметров tūg и tīg
Λ – масштаб новой физики (1ТэВ)

• МК-события (СОМРНЕР) $q \bar{q} \rightarrow t \bar{c}; g g \rightarrow t \bar{c}; c q (\bar{c}) \rightarrow t q (\bar{q}), c g \rightarrow t g$

аналогично для t $\leftrightarrow \overline{t}$

и аналогично для с $\leftrightarrow \overline{\mathbf{u}}$

• 2 набора событий: $K_c=0.03, K_u=0.0 \rightarrow (K_c/\Lambda)^2=0.0009 \text{ TeV}^2$ $K_u=0.03, K_c=0.0 \rightarrow (K_u/\Lambda)^2=0.0009 \text{ TeV}^2$

FCNC: детали первого анализа

- 2007, D0 данные, соответствующие 230pb⁻¹ (2002-2004)
- подобные критерии отбора и моделирования фонов, как и в D0 Runll публикации (2005) по одиночному топ-кварку
 - требование наличия только одной струи от b-кварка
 - СМ процессы рождения одиночного топ-кварка фон
- использовалась нейронная сеть для отделения FCNC-сигнала от фоновых событий (СМ, W+струи, парное рождение топкварков)
 - найдено 10 переменных, максимально эффективно разделяющих сигнал и фон

Поиск отклонений от СМ: FCNC - результаты

Распределения по некоторым переменным, используемым в нейронной сети для FCNC анализа

Семинар ОФВЭ ИЯИ РАН, 28.03.2011

Поиск отклонений от СМ: FCNC - результаты

- первые ограничения на параметры FCNC, проходящие посредством глюонов, полученные на адронных коллайдерах

FCNC: детали второго анализа

- 2010, D0 данные, соответствующие 2.3 fb⁻¹
- CDF, 2008: $\kappa_{tug}/\Lambda < 0.018 \text{ TeV}^{-1}$ $\kappa_{tcg}/\Lambda < 0.069 \text{ TeV}^{-1}$ (Phys. Rev. Lett. 102, 151801 (2009))
- подобные критерии отбора и моделирования фонов, как и в D0 Runll публикации (2009) по наблюдению одиночного топ-кварка
- использовалась Байесовская нейронная сеть для отделения FCNC-сигнала от фоновых событий (СМ, W+струи, парное рождение топ-кварков)

- 18-28 переменных (в зависимости от канала) из анализа 2009 ,были объединены с 10 переменными из предыдущего FCNC анализа

- конечный стабильный набор - ~24 переменные

Поиск отклонений от СМ: FCNC - второй анализ: результаты

Результаты — улучшенные пределы на FCNC-параметры

	tgu	tgc	hvs Lett B
Cross section	0.20 pb	0.27 pb 69	3 , 81 (2010)
κ_{tgf}/Λ	$0.013 { m TeV^{-1}}$	$0.057 { m ~TeV^{-1}}$	
$\mathcal{B}(t \to qg)$	2.0×10^{-4}	3.9×10^{-3}	

Поиск отклонений от СМ: Аномальная Wtb - вершина

Поиск отклонений от СМ: сечение и параметры генерации

• Сечение электрослабого рождения одиночного топ-кварка:

 $\sigma \propto A \cdot (F_{L1})^2 + B \cdot (F_{R1})^2 + C \cdot (F_{L1} \cdot F_{L2}) + D \cdot (F_{R1} \cdot F_{R2}) + E \cdot (F_{L2})^2 + G \cdot (F_{R2})^2$

• Необходимые значения аномальных параметров в МК-событиях:

	F_{LI}	F_{RI}	F_{L2}	F_{R2}	
СМ	1	0	0	0	
	0	1	0	0	
	0	0	1	0	
	0	0	0	1	
	1	0	1	0	
	0	1	0	1	

- s-канальные и t-канальные события
- Учитывают вклады от аномальных операторов и в рождении топкварка, и в его распаде

Аномальная Wtb-вершина: детали анализа

- осень 2007, D0-данные, 900pb⁻¹
- соответствующие правила Фейнмана вставлены в CompHEP
 создано ~50000 событий для каждой аномальной точки
- изучались вклады в электрослабое рождение топ-кварка правой векторной вершины, левой и правой тензорных вершин попеременно (три различных сценария)
- метод дерева решений для разделения сигнала и фона

Поиск отклонений от СМ: Wtb - распределения

Аномальные параметры в Wtb-вершине сильнейшим образом меняют угловые распределения !

Поиск отклонений от СМ: Wtb - результаты

Распределения для СМ-сигнала и фонов для событий с двумя струями и одной b-тагированной струёй (выходные данные дерева принятия решений) для трёх сценариев, рассматриваемых в анализе)

Результаты — пределы на аномальные Wtb-параметры для трёх сценариев

$(\mathbf{F_{L1}, F_{L2}})$	$ f_1^L ^2 = 1.4^{+0.0}_{-0.5}$ $ f_2^L ^2 < 0.5 \text{ at } 95\% \text{ C.L.}$	
$(\mathbf{F_{L1}},\mathbf{F_{R1}})$	$ f_1^L ^2 = 1.8^{+1.0}_{-1.3}$ $ f_1^R ^2 < 2.5$ at 95% C.L.	
$(\mathbf{F}_{L1}, \mathbf{F}_{R2})$	$ f_1^L ^2 = 1.4^{+0.9}_{-0.8}$ $ f_2^R ^2 < 0.3 \text{ at } 95\% \text{ C.L.}$	

Phys. Rev. Lett. **101**, 211801 (2008)

Семинар ОФВЭ ИЯИ РАН, 28.03.2011

Поиск отклонений от СМ: заряженный бозон Хигсса

H+

Модели с двумя Хигссовскими дублетами I, II и III типов - различаются механизмом подавления FCNC

Поиск отклонений от СМ: Н+ взаимодействие

Заряженный бозон Хигсса
 в s-канальном процессе

• Лагранжиан взаимодействия заряженного скаляра с фермионами

$$\mathcal{L} = \frac{g_w V_{q_i q_j}}{2\sqrt{2}} H^+ \overline{q}_i \left(a_{q_i q_j}^L (1 - \gamma^5) + a_{q_i q_j}^R (1 + \gamma^5) \right) q_j + \text{H.c.}$$

- константы определяются видом конкретной 2HDM
- Сотрнер события:
 - значения констант выбирались равными 0; 1
 - массы заряженного скаляра: 180-300 ГэВ
 - «левые» и «правые» наборы перевзвешивались для симуляции конкретной 2HDM.

Поиск отклонений от СМ: Н+ анализ

Н+: детали анализа

- 2008, D0 данные, соответствующие 900 пб⁻¹
- подобные критерии отбора и моделирования фонов, как и в D0 Runll публикации (2007) по открытию одиночного топ-кварка
 - одна или две b-струи
- инвариантная масса tb системы как переменная, различающая сигнал от заряженного скаляра
 - переменная М(jet1, jet2, W)

распределение по разделяющей переменной для сигнала, фоновой модели и данных; 2HDM III типа

Поиск отклонений от СМ: Н+ - результаты

Исключённая область в плоскости M(H+) vs tanB для 2HDM первого типа.

Результаты - пределы на сечения рождения заряженного бозона Хигсса (справедливы для 2HDM II типа и для 2HDM I (III) типа при tanB <0.1 (tanB>10))

M_{H^+} (GeV)	${\rm tan}\beta < 0.1$	$\tan\beta = 1$	$\tan\beta = 5$	${\rm tan}\beta>10$
180	12.9(11.4)	14.3(12.2)	13.7(11.7)	13.7(12.2)
200	[5.9(9.6)]	6.3(9.9)	6.5(10.0)	6.5(10.0)
220	[2.9(4.2)]	3.0(4.4)	3.0(4.5)	3.0(4.5)
240	[2.3(3.1)]	2.4(3.3)	2.6(3.5)	2.6(3.5)
260	[3.0(2.8)]	3.0(2.9)	3.0(3.0)	3.0(3.0)
280	[4.0(2.6)]	4.2(2.7)	4.5(2.9)	4.5(2.9)
300	[4.5(2.4)]	4.7(2.4)	4.9(2.5)	4.9(2.5)

Phys. Rev. Lett. **101**, 211801 (2008)

- Проведен цикл модельнонезависимых исследований отклонений от предсказаний Стандартной Модели в процессах электрослабого рождения одиночного топ-кварка на D0детекторе коллайдера Тэватрон
- исследования касались W', заряженного бозона Хигсса, FCNC и присутствия аномальных операторов в Wtb вершине
- Результатами стали установленные пределы на следующие параметры:
 - массу дополнительного заряженного бозона W' для различных сценариев взаимодействия W' с фермионами
 - сечения рождения заряженного бозона Хигсса в зависимости от его массы
 - параметры, определяющие величину FCNC-взаимодействия
 - параметры, характеризующие вклад аномальных операторов в Wtb-вершину

Поиск отклонений от СМ: итоги

- Для W' и FCNC проведены повторные анализы
 - большее количество экспериментальных данных
 - более усовершенствованные методы исследования
- Все результаты опубликованы от имени D0-коллаборации

Поиск отклонений от СМ: численные результаты

• Последние ограничения на аномальные параметры:

W'(левые токи) : $M_{w'} > 731 \Gamma э B$ - W': W'(правые токи): $M_{W'} > 739 \ \Gamma ext{ } ext{ } B \ (M_{W'} > M_{V_R})$ W'(правые токи) : $M_{w'} > 768 \Gamma э B (M_{w'} < M_{\nu_n})$ - FCNC: tgutgcCross section 0.20 pb 0.27 pb $0.013 {
m TeV^{-1}}$ $0.057 {
m TeV^{-1}}$ κ_{tgf}/Λ 2.0×10^{-4} 3.9×10^{-3} $\mathcal{B}(t \to qg)$

- аномальные параметры

Wtb вершины:

$$\begin{split} |f_1^L|^2 &= 1.4^{+0.6}_{-0.5} \\ |f_2^L|^2 &< 0.5 \text{ at } 95\% \text{ C.L.} \\ |f_1^L|^2 &= 1.8^{+1.0}_{-1.3} \\ |f_1^R|^2 &< 2.5 \text{ at } 95\% \text{ C.L.} \\ |f_1^L|^2 &= 1.4^{+0.9}_{-0.8} \\ |f_2^R|^2 &< 0.3 \text{ at } 95\% \text{ C.L.} \end{split}$$

- сечения рождения

аряженного бозона Хигсса

M_{H^+} (GeV)	${\rm tan}\beta < 0.1$	${\rm tan}\beta=1$	${\rm tan}\beta=5$	${\rm tan}\beta>10$
180	12.9(11.4)	14.3(12.2)	13.7(11.7)	13.7(12.2)
200	[5.9(9.6)]	6.3(9.9)	6.5(10.0)	6.5(10.0)
300	[4.5(2.4)]	4.7(2.4)	4.9(2.5)	4.9(2.5)

Поиск отклонений от СМ

Список публикаций

1. V. Abazov...M.Perfilov...[D0 collaboration] «Search for W' bozon production in the top quark decay channel» Phys. Lett. B 641 (2006) 423-431 2. V. Abazov...M.Perfilov...[D0 collaboration] «Search for production of Single Top quarks via tcg and tug Flavor-Changing-Neutral-Currents Couplings» Phys. Rev. Lett. 99, 191802 (2007) 3. V. Abazov...M.Perfilov...[D0 collaboration] «Search for W' Resonanses Decaying to a Top Quark and a Bottom Quark» Phys. Rev. Lett. 100, 211803 (2008) 4. V. Abazov...M.Perfilov...[D0 collaboration] «Search for charged Higgs bosons decaying to top and bottom quarks in p anti-p collisions» Phys. Rev. Lett. 102, 191802 (2009) 5. V. Abazov...M.Perfilov...[D0 collaboration] «Search for anomalous Wtb couplings in single top quark production» Phys. Rev. Lett. 101, 221801 (2008) 6. V. Abazov...M.Perfilov...[D0 collaboration] «Search for flavor changing neutral currents via quark-gluon couplings in single top quark production using 2.3 fb^-1 of p anti-p collisions»

Phys. Lett. B 693, isuue 2, 81-87, (2010)