Поиск тяжелых нейтрино в распадах каонов

А. Шайхиев, ИЯИ РАН

Семинар ОФВЭ Троицк, 10 октября, 2011

Outline

- Neutrino beyond the Standard Model
- Previous experiments
- Experiment BNL-E949
- Selection criteria
- \Box Sensitivity for the $K^+ \rightarrow \mu^+ \nu_H$ decay
- Conclusion

Standard Model neutrino

Neutrino beyond the SM

Three types of neutrino

$$v_{e} = v_{\mu} = v_{\tau}$$

 $L_{e} = +1 \quad L_{\mu} = +1 \quad L_{\tau} = +1$

$$V_l = \sum U_{li} V_i, \ l = e, \mu, \tau; \ i = 1, 2, 3$$

There is new physics beyond the Standard Model, but we don't know exactly what is it

Семинар ОФВЭ, Троицк, 10.10.2011

vMSM

arXiv:0804.4542v2 [hep-ph] arXiv:0901.0011v2 [hep-ph]

SM + 3 neutral right-handed heavy leptons

baryon asymmetry

 θ_1 and θ_2 - mixing angels with SM particles

How to find heavy neutrino?

Mesons decays

The search for additional peak

$$\Gamma(M^+ \to l^+ \nu_h) = \rho \times \Gamma(M^+ \to l^+ \nu_l) \times |U_{lh}|^2$$

Heavy neutrino decays

"Nothing" \rightarrow leptons and hadrons

$$N \rightarrow e^+ e^- v_{\alpha}, N \rightarrow \mu^{\pm} e^{\mp} v_{\alpha}, N \rightarrow \mu^+ \mu^- v_{\alpha}$$

 $N \rightarrow \pi^0 v, \pi e, \pi \mu, K e, K \mu \dots$

Семинар ОФВЭ, Троицк, 10.10.2011

plot from arXiv:0705.1729v1 [hep-ph]

Current limits

It was suggested to use E949 data to study heavy neutrino mass region from 150 MeV to 270 MeV in decay channel

$$K^+ \rightarrow \mu^+ \nu_H$$

Experiment BNL E949

$$K^+ \rightarrow \pi^+ v v$$

Phys. Rev. D 79, 092004 (2009)

SM expectation

$$\mathcal{B}_{SM}(K^+ \to \pi^+ \nu \overline{\nu}) = (0.85 \pm 0.07) \times 10^{-10}$$

E949 + E787

4 + 3 (from E787) = 7
$$\mathcal{B}(K^+ \to \pi^+ \nu \nu) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Семинар ОФВЭ, Троицк, 10.10.2011

The Detector

- ~700 MeV/c kaon beam is slowed down by degraders.
- K⁺ stops and decays in scintillating fiber target
- Measure π⁺ momentum in drift chamber, energy and range in target and Range Stack (RS)
- π^+ stops and decays in RS observe $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain
- Set of photon veto detectors

Heavy neutrino trigger

 $K^+ \to \mu^+ \nu_{_H}~$ has the same experimental signature as $K^+ \to \pi^+ v v$

single charged particle + "nothing"

-> use standard E949 trigger

- □ Wait at least 2 ns for K⁺ decay
- □ Stopping layer in RS between 6 and 18
- Photon veto: no showers in RS, Barrel,...
- $\square \pi^+$ identification: online check $\pi^+ \rightarrow \mu^+$ decay chain in the stopping counter

Background sources

Muon band: generally $K_{\mu 2\nu}$, $K_{\mu 3}$ decays **D** Pion band: $K_{\pi 2\gamma}$, $K_{\pi 2}$ in which pion scattered in the target or RS and beam pion

MC simulation of background sources

Process	Trigger+cuts rej	BR	Total rejection
$K_{\mu\nu\gamma}$	$\sim 10^4$	6.2×10^{-3}	$\sim 10^7$
$K_{\mu 3}$	$\sim 10^7$	3.35×10^{-2}	$\sim 10^9$
Only $\pi\nu\nu(1+2)$ trigger			
$K_{\pi 2\gamma}$	$\sim 5 \times 10^4$	2.75×10^{-4}	$\sim 2 \times 10^9$

 $K_{\pi 2\gamma}$ can be ignored due to 3 gamma in the final state and the strong range-momentum rejection of pions (~500). So the $K_{\mu 2\gamma}$ is the dominant background source for decay into heavy neutrino.

Background suppression

Comparison between data and MC

Km2+Km2g+Km3 events were simulated. PV60 is applied to experimental data. Spectra are normalized by number of Km2 events.

Total acceptance

BR(Km2) calculation

BR(K) =			$N_{K_{\mu 2}}$
	$DR(R_{\mu 2})$	$\overline{\varepsilon_{T\bullet 2} \times f_s \times (KBlive)}$	$_{1/20} \times A_{K_{u2},trig}^{UMC} \times A_{K_{u2},kin}^{UMC} \times A_{L1n} \times A_{\overline{19}_{u1}} \times A_{L0rr1} \times A_{offline_cuts}$
	$N_{K\mu 2}$	7916 ± 97	
	$(KB_{live})_{1/20}$	9.1×10^{10}	
	$\epsilon_{T \bullet 2}$	0.9505 ± 0.0012	
	f_s	0.7558 ± 0.0075	
	$A_{K_{u2},pnn1}^{UMC}$	0.4551 ± 0.0016	
	$A_{\overline{19_{ct}},onlinepv}$	0.1074 ± 0.0021	
\sim	$A_{L0RR1,L1n}$	$(1.49 \pm 0.40) \times 10^{-4}$	These cuts have low acceptances
	$A_{UTCQUAL}$	0.9503 ± 0.0007	for Km2 events
	$A_{K_{\mu 2},kin}^{UMC}$	0.7948 ± 0.0010	
<	A_{PRRF}	0.1486 ± 0.0106	
	A_{beamtg}	0.4195 ± 0.0003	$BR(K_{\mu 2}) = 0.5302 \pm 0.1478$
	$A_{OPSVETO}$	0.9742 ± 0.0006	$\sim \mu^2 \gamma$
	A_{tgkin}	0.9799 ± 0.0003	$DD^{PDG}(K) = 0.0255 \pm 0.0011$
	A_{PV90}	0.6977 ± 0.0011	$BR = (K_{\mu 2}) = 0.6355 \pm 0.0011$
	$\mathcal{B}(K_{\mu 2})$	0.5302 ± 0.1478	

Семинар ОФВЭ, Троицк, 10.10.2011

BR(Km2g) calculation

 $BR(K_{\mu\nu\gamma}) =$

-	$\mu \nu \gamma$					
•	$\overline{\varepsilon_{T \bullet 2} \times f_s \times (KBlive)_{1/20} \times A_{K_{\mu\nu\gamma},trig}^{UMC} \times A_{K_{\mu\nu\gamma},kin}^{UMC} \times A_{L1n} \times A_{L0rr1} \times A_{offline_cu}}$	uts				

 N_{κ}

	$\pi\nu\nu(1)$ trigger	$\pi\nu\nu(2)$ trigger
$A_{trigger}^{UMC}$	0.2676 ± 0.0006	0.0544 ± 0.0003
$A_{RefinedRange}$	0.5189 ± 0.0251	0.9852 ± 0.0066
A_{L1n}	0.0392 ± 0.0016	0.0413 ± 0.0021
$A_{beam\⌖}$	0.4195 ± 0.0003	0.4195 ± 0.0003
A_{tgkin}	0.9799 ± 0.0012	0.9799 ± 0.0012
A_{kin}	0.9115 ± 0.0010	0.9012 ± 0.0015
$A_{UTCQUAL}$	0.9503 ± 0.0007	0.9503 ± 0.0007
$A_{OPSVETO}$	0.9742 ± 0.0006	0.9742 ± 0.0006
A_{RNGMOM}	0.9739 ± 0.0012	0.9739 ± 0.0012
A_{PRRF}	0.9520 ± 0.0007	0.9520 ± 0.0007
A_{box}	0.3332 ± 0.0009	0.8509 ± 0.0016
A_{PV}	0.0077 ± 0.0003	0.0049 ± 0.0004
A_{fs}	0.7558 ± 0.0075	0.7558 ± 0.0075
$A_{\epsilon_{T\bullet 2}}$	0.9505 ± 0.0012	0.9505 ± 0.0012
$(KB_{live})1/20$	9.1×10^{10}	9.1×10^{10}
$N_{K\mu\nu\gamma}$	710 ± 27	414 ± 21
$\mathcal{B}(K_{\mu\nu\gamma})$	$(2.4 \pm 0.2) \times 10^{-3}$	$(2.2 \pm 0.2) \times 10^{-3}$

$$BR^{pnn1}(Km2g) = (2.4 \pm 0.2) \times 10^{-3}$$
$$BR^{pnn2}(Km2g) = (2.2 \pm 0.2) \times 10^{-3}$$

PDG value for p<231.5: $BR^{PDG} = (6.2 \pm 0.8) \times 10^{-3}$

Use MC simulation of the Km2g decay to measure ratio $\frac{N_{155$

PDG value for 155<p<205:

N_{p<231.5}

Семинар ОФВЭ, Троицк, 10.10.2011

Sensitivity

S.E.S = -----

$$= \frac{1}{1.7044 \times 10^{12} \times 1.53 \times 10^{-3}}$$

= 3.8×10⁻¹⁰

KBlive × A.

For muon momentum from155 to 205 MeV

$$\overline{\Gamma(K^+} \to \mu^+ \nu_h) = \rho \times \Gamma(K^+ \to \mu^+ \nu_\mu) |U_{\mu h}|^2$$
$$1 < \rho < 4$$

- heavy neutrino mass 200 MeV
- extrapolate 1/20 data sample to get total events number
- estimate sensitivity
- extrapolate estimation to other mass values using muon momentum spectrum shape

Sensitivity

Conclusions

- According to vMSM there is a possibility of existence of heavy neutrino with mass above pion mass
- □ It was suggested to use E949 data to search for $K^+ \rightarrow \mu^+ v_H$ decay
- □ SES equals 3.8x10⁻¹⁰
- Final result ~ end of 2011

Thank you!

L1.n rejection for layers 6 – 18

For each layer we tried to fit L1.n rejection factor by function

L1.n rejection for layers 6 – 18

Number of Km2g events Number of events χ^2/ndf 44.62 2 113.6± **P1** 14.13 Fit by function P2 0.1192E+05 ± 220.8 $f = P1 + \frac{P2}{100 - x}$ For the pnn1 trigger 2000 1500 $V_{K_{\mu\nu\gamma}}^{pnn1} = 710 \pm 27$ 1000 Use the same method: $N_{K_{\mu\nu\nu}}^{pnn2} = 414 \pm 21$ 500 30 50 60 70 80 90 40

Семинар ОФВЭ, Троицк, 10.10.2011 А. Шайхиев, ИЯИ РАН

PV acceptance (%)