Люминесцентные свойства и проблемы выращивания кристаллов LiF

Н.В. Ширан

Институт сцинтилляционных материалов АН Украины, Харьков

I. Оптические параметры чистых и легированных кристаллов LiF

- Люминесцентные и абсорбционные свойства
- Оценка сцинтилляционной эффективности при 10К
- Радиационная стойкость

II. Проблемы выращивания крупногабаритных кристаллов

- Методы роста и обработки
- Крупногабаритные сцинтилляторы на основе CsI и Nal
- Особенности получения LiF с заданными свойствами

Основные этапы научно-технологической разработки сцинтилляционных кристаллов LiF

I. Оптические параметры чистых и легированных кристаллов LiF , Эффективность сцинтиллятора

Схема сцинтилляционного процесса

LY \approx **η** 10⁶/E_g \approx **5**·10⁵/

- С? световыход
- Е_д- запрещенная зона кристалла
- S эффективность переноса
- Q квантовая эффективность центра свечения

Сцинтилляционная эффективность определяется величиной запрещенной зоны базовой матрицы и потерями энергии

Проблема 1.

Ширина зоны LiF (E_g ≈ 14.2 эВ) наибольшая среди ЩГК, что обуславливает низкую сцинтилляционную эффективность

Низкотемпературная люминесценция кристаллов LiF разного происхождения

Центры свечения при 10К: 364 nm \rightarrow STE (F – V_k) 295 nm \rightarrow STE surface 264 nm \rightarrow Impurity 413 nm \rightarrow (V_k - H) 221 nm \rightarrow (F' - V_k)

Спектральный состав и интенсивность УФ свечения зависят от степени чистоты и совершенства кристалла!

Оценка световыхода кристалла LiF при 10К

LiF из були 200х200мм, выращенной методом Киропулоса в контолируемой атмосфере в ИСМА. Образец сравнения - чистый кристалл CsI. Сцинтилляционный выход CsI превышает ~100 000 фот/ МэВ при 77К.

Спектры экситонной люминесценции LiF и CsI при 10К (возбуждение синхротронным пучком 130 eV, 10⁵-10⁶ ph/s BW-3, DESY, Гамбург).

Отношение площадей под кривыми показывает, что интегральный выход экситонного свечения LiF составляет 5% от Csl.

Вывод: Оценки показали, что сцинтилляционный выход кристалла LiF близок к 5000 фот/ МэВ.

Кристаллы LiF(Nb₂O₅), LiF(TiO₂) и LiF(WO₃)

Спектры поглощения. Перекрыта УФ-область - подавление STE-люминесценции

Спектры активаторной люминесценции подобны. Область излучения 380 - 450нм

Люминесценция кристаллов связана с кислородом. Специфические особенности обусловлены соседством поливалентных металлов. Это – еще один вариант, которые требует специального изучения при 8К.

II. Исследование низкотемпературной люминесценции кристаллов LiF

Результаты

- Интенсивность собственного УФ свечения зависит от чистоты кристалла LiF.
- Сцинтилляционный выход LiF близок к 5000 фот/ МэВ
- Синяя люминесценция легированных кристаллов, связана с кислородом и расположенными по соседству ионами металлов.

Для поиска темной материи – требуется оптимизация свечения LiF

III. Проблемы выращивания кристаллов

Методы выращивания галогенидов

<u> Метод Бриджмена</u>

✓Малые размеры

✓Неоднородность распределения примеси

√Напряжения

Промышленное производство в ИСМА крупноразмерных сцинтилляторов Csl, Csl:Tl и Nal:Tl

Industrial area ISMA

Техника непрерывного выращивания

Система подпитки порошком

Подпитка расплавом

Недостатки:

- 1. Большой объём расплава
- 2. Большая поверхность расплава (испарение активатора)
- 3. **Очистка ?**
- 4. Подпитка порошком

Преимущества:

- 1. Непрерывный рост (большие размеры кристалла)
- 2. Фиксированная поверхность «кристалл-расплав»
- 3. Подпитка сырьём и активатором
- 4. Хорошая конвекция расплава
- 5. Контроль уровня расплава
- 6. Вращение кристалла и тигля

Crystal growth from cylinder crucible

Влияние анионных примесей на прозрачность LiF в УФ и ВУФ диапазонах

Необходимость применения реактивной атмосферы (CF₄, HF, C₂F₄) в процессе выращивания кристаллов LiF !

Деформационные технологии крупногабаритных кристаллов.

Birefringence distribution (radial cross section)

Birefringence distribution (axial cross section)

Traces of weight induced deformation

Large angle grain boundary formation

ПРОБЛЕМЫ: Неоднородность. Дислокации. Деформация.

выводы

Кристалл LiF - низкоэффективный сцинтиллятор с выходом ~5000 фот/МэВ при 10 К.

Есть перспективы повышения чистоты и модификации активирующих добавок, но радикально увеличить световыход нельзя.

Крупногабаритный кристалл LiF (выбранного состава) может быть выращен полуавтоматическим методом, но для этого нужно изготовить специальную установку.

Разработка установки, технологии получения сырья и выращивания кристаллов потребует как минимум 1-2 года.

Благодарю за внимание

Свойства LiF

- Кубическая сингония, F m3m, a = 0,40279 нм, Z = 4.
- Плотность 2,64 г/см³.
- Температура плавления 870°С.
- Прозрачность от УФ до ИК области (0,11- 6 мкм).
- Запрещенная зона 14.2 eV
- Экситон 13.0 eV
- Область УФ люминесценции при 9К: 215 370 нм.