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M.A. MAPKOB u HenTpuHO

1960: Upes ncnonb3oBaHUA 03ep M OKeaHOB AJIA perncTpauum
HeUuTpuHo (AdromaHg — bakcaH -- Baukan)

1967: NpenckasaHne pocTta CE4YEeHUN TO CeYeHUe HeEUTPUHHBbIX
MHOro4acTuiHbIX NMpoueccoB C 3Heprueum ( goknag Ha cemmHape CERN-
JINR B Pure).

KHura «HentpuHo» (1964)
AHHOTaUMSA:

«lNpepnaraemMbin 0630p orpaHMy4eH p1M3nyeckKuMn siBIEHUIMU B HEUTPUHHbIX
ny4Ykax u psiaom npobrnem cnabbix B3auMoAeUCTBUMN, CBA3AHHbIX C huU3nKom
HeUTpuHo. Bce 6onee n 6onee cTaHOBUTCA SICHbIM, YTO HEUTPUHHbIE
npouecchbl UrparT CyLEeCTBEHHYIO pOorib B Npupoae, packpbiBaeTcs
OGoratenwee pasHoobpa3me adpdekToB € yHacTMeM HeMTpuHo. EcTb ocHoBaHue
nonaraTtb, YTO psaa actpodu3anyeckux NnpoodrieM MoXeT HaUTU CBOe peLleHne
npu ganbHeUwWeM N3y4eHMN 3aKOHOMEepPHOCTeN HEUTPUHHON husuku. He
UCKJTHOYEHO, YTO HEUTPUHHbIE NpoLecCbl UMEKT CyLeCTBEeHHOe 3Ha4YeHue ans
KOCMOJIOrMn U KOCMOroHUU. HenTpuHHaA aCTPOHOMUA MOXET CTaTb AESIOM He
TaKoro yx ganekoro oyayuiero.



JreKTpoOMarHMTHbIe CBOUCTBaA
HEUTPUHO

 W3nyyeHne cboToHa HENTPUHO B NOCTOAHHOM none ( 4.I. u H. Hukumuna, XX3T®,
m. 62, c. 2008 (1972)). YeTbipexcdepMUOHHAA TEOPUA C TOYHLIM Y4E€TOM BHELLUHEro
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The rest Is based on:

« DG, Synchrotron radiation from massless charge,
Physics Letters B 747, 400 (2015)

DG, Electromagnetic and gravitational radiation from
massless particles, arXiv:1512.06826

« DG, P. Spirin and Th. Tomaras

Gravitational radiation form massless particle
orbiting a circle (in preparation)



Massless particles interacting with
massless fields

Photons, neutrino, gravitons in GR

Gluons in QCD +
Massless charges (MC) in QED -?
Collinear divergences +
Charge screening -+
e(x#) >0 inthe IR -+

But: classical motion in external field
Massless QED in external magnetic field
MC exists, but unobservable: do not radiate
Radiation from massless particles in GR

D Y+ +



QUESTIONS

Is Minkowski space QED with massless charged particles non-
contradictory? (Bakc, N'pnboos, Cmunra...)

Can classical ED describe radiation from massless charges?

Are ultrarelativistic limit and massless limit for radiating
particle identical?

Whether quantum radiation power from massless charge have
classical limit?

Whether radiation from massless particle moving along
geodesic in curved space be described classically?



Larmor formula for radiation in classical ED In
the massless limit

Power emitted by a classical charge in magnetic field

20 H2 [ E\?
Pc*l: ( )

3m2 \m

diverges as m—->0
Is this formula applicable to a «true» massless charge?

Lienard-Wiechert potential has singularity along the line parallel to

the velocity oyl

AP =
R(1 — cos6)

ret

reminiscent to collinear singularities in QFT.
Radical claims (Kosyakov, Lechner): NO RADIATION

BUT: spectral decomposition is correct,
Schott remains right!



Schott formulais valid for v=c

dP = ewﬁw%l 9 19, o o2,
0= Z o {tzm 0.1 (v3cosl)+ 3-J, (v cos 9)} g —1
v=0
but the harmonic number  w=rwy, wp= (? IS no more
bounded at high frequencies: '

v < g~ (1= 02732 = (E/m)?

so the total power diverges. But passing to continuous spectral

distribution, integrating over angles, and taking the limit m - 0 one
obtains the non-singular spectral distribution

dp 2 )1/6 / 1/3
dw N v (wH)

which has the only problem to be non-integrable at high frequences, so
a cutoff has to be introduced. This classical formula is relevant as low-
frequency limit of en exact quantum formula.




Total power with quantum cutoff

Absence of classical cutoff corresponds to shrinking to zero of radiation
formation length for massless charge. In quantum theory formation
length can not be shorter than de Broglie length A\ = hic/E

therefore we cut on the quantum bound

Wmax — E/h

obtaining e2\/3T(2/3)

Q. 2/3
Pew = — 23— (3¢chHE)*/

This expression differs from the true quantum result only by numerical
factor. It diverges as Planck’s constant goes to zero as

h—4/3

Non-analyticity in e and 7 indicates on non-perturbative nature of
this result



SR In quantum theory

Start with exact solution of the Klein-Gordon (Dirac) equation in
magnetic field producing the Landau spectrum (macroatom)

E=+eH(2n+1)+ p?

Consider radiative transitions from n to n’

Sum up over final states to get spectral-angular distribution and the
total power

For massive charges the detailed theory was developed by Sokolov,
Klepikov, Ternov, Bagrov, Zhukovski, Borisov in 50--70-ies

Later approaches: Schwinger, Baier, Ritus... -- using mass operator,
summing over final quantum numbers implicitly

M }f/\"\ ImM z:i




SR In massless QED: Schwinger approach

Exact calculation of one loop mass operator in massless scalar QED
The corresponding term in the action —é / o(x)M (x, 2" o (2 dxda

In Schwinger sympbolic notation the exact in H one-loop mass-
operator of the massless charge reads

o2 g et 1 o dl
M = e / [(‘H O el A)] 5o M

]

where I, = —i0, —eA,. A, stands for constant magnetic field H, and
My is the subtraction term. Exponentiating two propagators

s s sds —isH ; ;
k2 (T — k)2 /0 Sds/o ’ Cwith  H=(k- ull)? — u(1 — u)I1?
one replaces integration over k is by averaging over states of the

fictituos particle M — je? / sds / du(€|(TT—k)! e (TT—k),,|€)
0 0

treating 7 as Hamiltonian



Operator products are disentangled in Heisenberg representation for
fictitious particle, and are taken on shell, i.e. #(z) = ¢(r)e™"#" satisfying
o =0 with g= veH(2n+1).  Theresult reads

2l o d -
M= i_ du / ?S {e—sz—l/Q (EQ(I)l + 4ieH Do + -3'(1)3/3) — Qi/S}
T Jo Jo

(1 —u)?
A
2u(1 — u)sin® x

$y = sin 2x — cos 21,
x A

1 —u usin 2x
2cos2x — 1
A (2cos2x — 1) + TN

u(l — u)

(1)1:3—4'ZL—|—’IL2— A

(dcos2x — 1) — sin 2 ,

$3 =1+ (4 cos2x — 3),

: . 9
sin 2x 5 [ SInx
where © =eHsu and A= (1—u)*+u(l —u) + u? ( )
xT

This is true for all Landau levels n.



Quasiclassical motion n>>1

Simple analytical result can be obtained for high initial Landau levels
n>>1. The imaginary part Im M (divided by -E) gives the total
probability of radiation summed over all final n’. The integrals over x are
computed in the leading approximation in n ~13 expanding the

exponential and the rest of the integrand in powers of x. One gets

2 1

r=-"_ [ au / i E2®q siny + P (1 —cos)
A E Jo Jo T XL

where ¢ ~ (2n + 1)az® . After x-integration one finds

€21 (2/3) (3¢ HE)*? 18 — 32u/3 + 19u2/3 — 3u3
I' = ‘ du
8TV3E 0 u?/3(1 — u)t/3
- P = 2 (2/3) Berrp) - -
and finally Y (2/3) (3eHE) Decaying levels acquire the

Imaginary parts of energy levels E -1 /2, so the spacing must be << T

This gives upper restriction n < ik 1, ~0.5-107

16 [T (2/3))° o




Radiation spectrum

To get the spectral power of radiation one has to perform Fourrier
decomposition inside the mass operator

P(w) = —% Im ( / "™ M’ i)

o — 00

where the modified M is
I 1 L 0
M' = —fz',ez/ Sds/ du(E|(TT — k)*e " e ™™ T(T1 — k), [€)
0 0

Calculations in the quasiclassical regime n>>1 give

ey [

~ 4nE J,

, , ‘ | >Hv
(E‘Z(S —v%)(1 —v)*zsiny + i (1 — cos u’,ﬁ)) dx

2

P(w)

where v=w/E . Integrating over X as before, one gets



where the normalized spectral distribution is
introduced (red curve)

27
27T\/§

The curve has maximum at

fP ({‘) — _,Ul/f%(l o ’(})2/3

1
h ‘max — -F
209, 3

The average photon energy
-1
4
(hw) = FE / vP (v)dv = =F
J0 9
For small frequencies spectrum
coincides with classical result.
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In the case of spin 1/2 calculations are essentially similar
and lead to the following expression for the spectral power:

. 81v/3
1/2 (1’) — 64T
At the upper limit v — 1 the spin 1/2 spectral power has an
integrable divergence. The low-frequency limits are identi-
cal for both spins and coincide with the classical spectrum
(h disappears):

V31 =) 1B —204+2). (14

,31/6 w "’ eH
Palw) =e"—T'(2/3) (—) WH , WH = 7= - (15)

m WH

This power-low dependence exhibits ultraviolet catastrophe
(no high-frequency cutoft), which is cured in quantum the-
ory. _ _

~ One can also investigate the case of vector massless par-
ticles, s = 1, but then the result is infinite: magnetized
vector QED fails to describe radiation from massless vector
charges. This could be expected in view of the results of
Case and Gasiorovich,” who gave the arguments that elec-
tromagnetic interaction of massless charged particles with
spin one and higher is controversial.



The total power is obtained integrating over the spectrum

E/h 2¢2 1 (2/3 o/
P/ P(w)dw = —— (9/ ) (3enHE)**
Jo 27}'1;"'

It has exactly the same functional form as the result of intergration of
classical spectrum with quantum cut-off, differing only by the
numerical factor of the order Y.

This quantity diverges for zero Planck’s constant. Thus, synchrotron
radiation form massless charge is essentially quantum, consisting of
hard quanta of the order of particle energy. Remarkably, this does
not depend on the value of magnetic field and the particle energy.
Even in weak magnetic field of the Earth such particles would be
observable by their radiation with universal spectrum.



No classical radiation reaction

* One conseguence of guantum nature of SR from massless charge is
that the radiation reaction problem becomes meaningless. Such an
equation derived by Kazinski et al ('02) has strange features like
non-lagrangian divergent terms and fifth derivative in the finite term.
Meanwhile, massless limit in the usual Lorentz -Dirac equation
diverges, like the Larmor formula. The reason is that quantum recoill
makes the reaction problem stochastic.

 Moreover, in the sinchrotron radiation theory there is stronger
restriction on the validity of classical radiation reaction equation due
to excitation of the so-called betatron oscialltions. The threshold is

E Ei/5=m @ o
fluct 1/5 — 1Y H

* |tis lower than the recoil treshold



SR emission of gravitons (flat space)

The charge also emits gravitons in Minkowski space in the framework
of the linearized gravity Guv = N + 2¢hy, , With interaction

L
S =% [

mn 2 L Where T‘[u) — j-;;;u _|_ Tgy
Second term is Maxwell, it is needed to ensure conservation equation

0, IT"" =0 | The Maxwell field must be the sum of the external

(magnetic) field and the retarded field of the charge
LV ]' 1 vre LATEL L/ 1 L K re
ch‘ — y (F! '\.7:,\ S~ A tF)\ _ 5,0; Ia /\j_—m\t)

ret self rad

The retarded field has to be further split as Fx =Fn +F0
to account for resonant transformation of EM wave to GW in the
homogeneous magnetic field. One needs to keep only linear term in
the retarded field of the charge (quadratic is self-energy like)



EM-GW tansformation (Gerzenshtein effect)

* Due to linearity of the Maxwell source term in the retarded field is
splits as ThY = thv 4 S where

v — 41 (F’U/\f vrad Fp.)\radFAv o 1 quf )\FI‘"L(]_)
s 2

1

1
py U — vself puAself v
S (F Fyelf | puaself pv

- ;LUFH‘.-/\FS'OH

« Thefirstis tr|V|aIIy conserved, while the second is conserved
together with the mass term, i.e. S acts the non-local source of GW.

 The corresponding two GW amplitudes do not interfere and can be
considered separately. The first source is EM-GW transformation

* In the magnetic field (Gertsenshtein effect),

dP, dP,
res BQ 2 %dem
df? = GBR dQ

* S0 the same considerations apply to it: radiation is quantum.




Proper gravitational radiation

The second part of gravitational radiation (genuine GW)
Is generated by the sum of the sources 7+ =T + S

has the spectrum falling with frequency

(JEPGVV B I (1/3) 35/6GE2&)H (WH ) 1/3

dw 27 W
which is falling with frequency, but is still non-integrable,
and guantum cut-off is thus needed.



“Quantum” spectrum

The normalized graviton spectrum is
9/ h\2/3 s
YA p— — — - E _— o *
Paw 3 (E) O(F — hw)w
and the average energy of emitted graviton

E/h 9
(hw) = / hwPowdw = —FE
5

0

so radiation is again hard.

Thus, graviton emission by massless non-gravitating source
computed within the linearized gravity in Minkowski space-time is
essentially quantum process. Large recoll precludes possibility of
classical description of back reaction a la Lorentz-Dirac.



Relastivistic orbits near black holes

: . _ dr\” I U = (1 2M L2 1 0
Time-like geodesics (- | +U(r)=0 r) = )z v
dp L dt __(,_2M -1
dr 12’ dr ' r
Circular orbits: U(r,) =0 =U'(r,) lead to
2\ T\ /2 o N\ !
Y= (1 - 21\1) (1 - 3]\1) L e (1 _ &)
Tp "p gl r and
, N\ 1/2 o\ —1/2 o
wo=3 _ (ﬂ) o (1_ SM ) Corbits 3M < r, < 4M
dt p Codr r

are unstable and jump to large angle scattering orbits with impact
L ) (4]\1 1) ~1/2 Fory > 1 unbound orbits close to
b =3v3M make multiple revolutions

Tp



GSR from massive bodies

Null circular orbitis atr,, = 3A  (photon orbit).

Massive ultrarelativistic orbit are close r, = (3 + )M

so that 72 _ i

30

For massive ultrarelativistic particle aiming to explain gravitational
wave flux reported by Weber (Misner, Brill, Ruffini, Breuer,
Chrzanowsky ...) in 70-ies, The spectrum has a cut-off at the harmonic

12
Meyr = —7 _
m of the rotation frequency. The total power was
computed in

DG and Matiukhin, Sov J Nucl Phys v.45,555 ('87)

6e™/4(ry — M) |T(1/4 +i/4)]

Pasr = °1
GSR 7T3/2r12)(frp+3]\/f) ()" In(y)




GSR from massless particles

* One can imagine flows of
neutrinos or photons scattered
at large angle on black holes,
their radiation can be
estimated knowing power of
GSR

o Gravitational radiation is
described by the solution of the
Teukolsky equation. Fluxes
going to infinity and to black
hole are the same, so we need
to calculate only the Weyl
Newman-Penrose scalar V¥,




Total radiation power from massless point particle at a circular orbit

E2w
Pasg =k OZ—

where the sum has no frequency cut off and diverges

. E
Introducing quantum cut-off mmax = . we get
AL ()

E?wy &= 1 E*wy E
Posp = k=2 S~ 4 = p =gy (=
GSR M Z m Mo hwo

Energy loss per revolution is E2 E
9y P AEC’R_I{IJ\[ 111( )

and the efficiency is AFE E ( E )

hwo

€ = = k1— In

E M rLu(]

It may be non-small within the limits of validity

B
< M, In (—) > 1
huwq



Conclusions

While motion of massless point particles is unambiguosly prescribed by
classical GR as null geodecis, their gravitational radiation IS not

Gravitational radiation from massless particles in classical GR
exhibits ultraviolet catastrophe, appealing to quantization of gravity.
This is an independent argument apart of the problem of singularities.

Quasi-quantum GSR power obtained integrating classical spectrum up to
the quantum cut-off 7iw = E is likely to indicate that efficiency of graviton
emission for large angle scattering of massless particles from black
hole can be non-small (partly applicable to LED transplanckian problem),
but it is small in the case of lensing (and deflection by Sun). Thus lensing
proves not only classical GR, but also quantum gravity!

Gravitational smoothening in the spectrum of GSR vs SR is manifest, but
the effect is not enough to ensure the UV finiteness



Congratulations to
winners

and thanks for
attention!
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