01.04.01-

-

«_____» _____2010 .

•

• •

«_____» 002.119.01 . : 117312, . . , 60- . , . 7 .

-

«_____»____2010 .

1. (,⁷ , CNO), 13 2 (0) (< 0.42) -(GALLEX/GNO, SAGE). , , (⁷¹Ga 0.24), , < 2% , , , KamLAND LMA , $\tan^2_{12} \sim$ < 1 ó 2 0.45. LMA Borexino, (E = 0.862). , E < 0.42_ ¹¹⁵In ¹⁷⁶Yb. ¹¹⁵Sn* (¹¹⁵In) 114

(2 0).

•

< m >

 $2\ 0$.

H-M $<m> \sim 0.5 \text{ ó } 1.3$

,

,

⁷⁶Ge.

,

<m>.

,

,

,

2 (0)

,

,

,

	<u>.</u>		
	:		
•	(Yb, In)		
•	-		
	(₁₃ ,Double Chooz RENO)		
• Nd-			
			·
<u> </u>			
•	In-		
	(5-10%),		
•	,	7	
		•	
•			
• In			
• Gd-			
(Double Chooz).	LVD (2.4 .),	2-

•

, . ,

•		20.	Nd-					Nd,
150N	ſd		Yb	LEN Lu	IS (¹⁷⁶ Yb Nd) U(238)/J	2 (0) Th(232)	
	,			,			,	,
-	1.		,			Yb/In		
		(10	0%)				
	2.						In	
	3.					·	Yb/In	
	4.		Gd-				(Double
	Che	ooz)						

	5.			Gd-	(Gd	0.1%)
				LVD.		
	6.	Nd-				
	7.					Nd
-		<u> </u>			:	-2004
(,), TAUP-2007, (),	,),	-2008 (,
-		. 18	,			
4			158	, , 110	92	, 26

(Yb,In,Gd,Nd)

In

•

.

In

•

Yb, Gd, Nd,

•

-

•

).

(

<2%.

MSW

,

SNO KamLAND

$_{12}$, Δm_{12}^2 ,

, ⁷

,

(LMA): $\Delta m_{12}^2 = 7.59_{-0.20}^{+0.21} \cdot 10^{-5}$ ², $\tan^2 2\theta_{12} = 0.47_{-0.05}^{+0.06}$.

•

,

LMA-MSW

. < 1

(~ 0.65)

(0.5%)

•

(Z,Z+1)e⁻,

¹⁷⁶Yb, ¹⁶⁰Gd, ⁸²Se, ¹¹⁵In

(LENS). .1

	T _{1/2}			Q	E [*] []	$T_{1/2}^{*}$
				[]		
115 In (9/2 ⁺)	4.4 ± 0^{14}	95.7%	115 Sn (7/2 ⁺)	114	116+498	3.26
176 Yb (0 ⁺)		12.7%	176 Lu (1 ⁺)	301	72	35
160 Gd (0 ⁺)		21.9%	160 Tb (1 ⁺)	244	75+64	6÷60
82 Se (0 ⁺)	100^{20}	9.4%	82 Br (1 ⁺)	173	29	7

 $|_{e}>, |_{>}, |_{>}$

12, 23, 13

12 , 23 , ,

•

,

.

 $\sin^2 2_{13} <$

,

•

,

13

0.2 (Chooz).

(Double Chooz, RENO, Daya Bay) $\sin^2 2_{13} < 0.03.$

10 .

),

•

,

•

,

, 2 (0).

,

2 (0)

,

 150 Nd (E = 3.368) 2 (0) .

(

.

	,			2 (0)		
15	0 Nd ,		NEMO-3:			
	$_{1/2}^{0\nu} > 1.8 \times 10^{22}$					
	SNO+,	2 (0),			
				1000	2	
-		_			Yb	In-
		•		Y	Ъ-	
						e +
¹⁷⁶ Yb	$^{176}Lu^* + e^-$.					
	301	,				•
			•			
		,				е,
		50	72 ,			
		•	Yh-			(
		In-, Gd-, Nd-)	10	¹³⁷ C	, Cs (E 662	2).
		,,,	~ 5			
	Bicron 630		-	. 3øø (Phi	lips XP34	62PB).
			(ORTEC142)	y - 1-1- X	(1	10 dB)
			(ORT	EC672)	× ×	/
				,		
	,		Gamma Vision	n 6.		
		50:	5,			
	()			(1.	5 /)	
(4 /).	. ,	505 ~ 80%		,	(-1.5	/) ~

Yb-

,

Yb

14

²³⁵U, ¹⁷⁶Lu, ¹⁶⁹Yb

•

			(114	Ļ)				1	¹⁵ In
(95%)										
		_e + ¹¹⁵ In		,	,	,				
1		2 ⁻			115 1 p			:		
1.)			+ III (
2.		,	(= 4.70	6) $^{115}Sn^{*}$ (7	//2+,612.8)			
3.		$^{115}\text{Sn}^{*}(7/2^{+}$	3/2+, 49	7.3)		116		(-/) ₂ ,
					e_1					
4.								¹¹⁵ S	Sn [*] (3	$3/2^{+}$
	1/2+)		₃ (497).						
	In	,			Yb,			(~	2)
					PC	(BPO-4 /),		1	0%
In						In(2M	MVA),	(2M	[VA-	2
),			~7000	/			
			In							
.5.										
			100 - 95 -							

.5.

.

ó4 /). (

: 2.5 (In ó 80 /), 2.9 (In -75 /) 3.9 (In ó 55 /). , 100 , (

bis-MSB),

.

,

In,

(3ö XP3462PB),

.7.

,

VM2000. (LeCroy 612AM), (CAEN N224),

.

(LeCroy ADC 2249W),

•

30

15

100 .

16

,

•

(2ö ETL9954B)

, 9
()
- -2 /, bis-MSB-20 / ().

$$^{137}Cs$$
 (+VM2000)
6 4.2 .
477 (5.4 ± 0.2)% ~ 3
; 10, 30, 50 70

с.

/ , bisMSB-15 /). 4

In

+.11.

,

-

2.

				•	
	In	In		,%	
#		(.)		(,
		/)	
2	In(acac)	48		~30	1.2
4	In(acac)	1		~70	2.8
			+		
6	In(2MVA)	54		~70	1.7
8	In(2MVA)	51		~70	1.2

In-

¹¹⁵In.

,

)

,

R_{90/10},

90	10	¹³⁷ C	2s

,

,

S/N ~1,

25.7%.

•

Gd-

(₁₃, Double Chooz).

¹¹⁵In.

Gd-(-

,

40: ó (92.0 \pm 0.7) %, ó (25.0 \pm 1.0) ; T3131: ó (88.7

 \pm 0.9) %, ó (27.6 \pm 0.8) .

~ 2 .

4%.

2 (0). Nd, () , () • , -1.5 / , bisMSB-30 (/), Nd- 6.5 / , ~ 9500 / -1.5 /) c ((10 /), (Edinburgh Instruments 199S) , d = 0 (FF). =3.6 . 5 5 100 (-1.5 /) (-1.5 / , bis-MSB ó 30 /) Nd (6.5 /). ¹³⁷Cs (100 Bq) 5 . ~ 10 . (3ö Philips XP3462), , PS740. PS777 (K 0÷50), • ~ 200 (LeCroy 2249A). , 100 . Nd- 210 ± 10 . .15 ,

,

¹³⁷Cs.

Nd-

 $^{150} \rm Nd$ - 3.37 , $^{208} \rm Tl~(E_{max} \sim 5$, = 3.1).

•

3.

HPGe	ICP-MS

(HPGe)

ICP-MS

3. . HP-Ge 50.2 . 37.3 137Cs 234 Pa^m ²³⁴Th $^{235}\mathrm{U}$ 228 Ra ²²⁸Th 226 Ra $^{40}\mathrm{K}$ ppb 8.5±1.1 ppb 0.39±0.23 ppb <9.5 $\frac{\text{mBq/k}}{<\!86} \quad \frac{\text{mBq/kg}}{9.7\pm2.7}$ ppbppbppb 6.6 ± 1.8 <22 < 9.1 ²⁰⁸Tl 3.37 ~ 10 , ²³²Th Ö 10 ppt. (0) < m > = 100¹⁵⁰Nd 60% ~ 30 CTF(Borexino) Nd-(V ~ 400) (± 3) 2.6 • 40 . , Th Nd-1 ppb (1 ppb Th - 0.33 /).

2 (2) ¹⁵⁰Nd.

•

,

2 (2)

,

1 ppt.

(Nd)	(Nd150)	m	S 0	S2	8B	208 _{Tl}	S/çB
			/	/	/	/	
92	55	100	23	1.0	0.3	10.6	6.6
92	55	50	5.7	1.0	0.3	10.6	1.7

$$T_{1/2}^{0\nu} = \ln 2 \times \frac{\eta \cdot \varepsilon \cdot N_A}{A \cdot n_\sigma} \times \sqrt{\frac{M \cdot T}{B \cdot \Delta}}$$
$$T_{1/2}^{0\nu} (^{150} Nd) \sim 1.3 \cdot 10^{25}$$

,

:

1.
$$(, ^{7})$$

Yb- In-
Yb(IVA)₃ In(2MVA)₃ ,
10% .
 (1) .
2. Yb In
 (10%) .
 (10%) .
 (10%) .
 (10%) .
 (10%) .
 (10%) .
 $()^{-}$
Yb-
 $(10\% Yb) \sim 4000 / .$
 $()^{-}$
Yb-
 $(10\% Yb) \sim 2.5 (430)$
 $()^{-}$
Yb-
 $(10\% Yb) \sim 2.5 (430)$
 $()^{-}$
 $()^{-}$
Yb-
 $(10\% Yb) \sim 2.5 (430)$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$
 $()^{-}$

5

:

5.									
(9	,)		
	,	115		:					
•		¹¹⁵ In							
•	0.7	-4.0							
6.	Doub	le Chooz							
	(20%)-	(80%)			Gd (0.1	%)			13
					•				
					(~400)			
7			Gd-					$(\mathbf{G}_{\mathbf{d}})$	1%)
1.			2				IVE	(000)	.170)
	•		2-	,)(2	.4),
		²⁵² Cf					·		
8.	· 2 (0)			¹⁵⁰ No	d		-		
			(Nd(2N	MVA))			
	•					12	7		
9.		1	,			15	′Cs,		
0.650/ DD	O_{15} / bis	SD 20	()		(-1.5 /)	(Nd-	
0.0570, FF	0-1.5 / ,01810	ISD-30	/).						
INU-	-2.1	•			-	238 _{1 1} 232 ₁	1.		
1U.				NT -	1	υ, Ι	11		(ICP-
MS).				NC	1-	~			
	10		1/	$_2 = 1.3$	5.1025	2	(0),		
	12				•				

- I.R.Barabanov, .., E.A.Yanovich et al., Rare-earth loaded liquid scintillator (for LENS experiment), Preprint INR-1037/2000.
- E.A.Chuveleva, .., E.A.Yanovich et al.,õ LENS: Purification of Ytterbium from Lutetium by sorption chromatographic techniqueö, Preprint INR RAS 1042/2000.
- I.R.Barabanov, L.B.Bezrukov, .., E.A.Yanovich et al., Possibility of Yb-loaded scintillation detector with one volume for registration of the solar neutrino. Preprint INR-1091/2002

LENS ó

).

4.

•••,

(

, 2003, 45, 2, .128.

. ., . ., . . .,

- C.Cattadori, C.Salvo,.., E.A.Yanovich et al., A novel formulation for an indium loaded organic liquid scintillator based on indium extraction by C₆-C₈ carboxilic acids. Preprint LNGS/EXP-06/04-September 2004.
- C.Cattadori,C.Salvo, E.A.Yanovich et al., Formulation of an indium loaded liquid scintillator by means of indium extraction in trimethylbenzene by C₃-C₅ carboxylic acids and NOPS. Preprint LNGS/EXP-07/04-September 2004.
- I.Barabanov, L.Bezrukov, V.Gurentsov, V.Kornoukhov, E.Yanovich Search for antineutrino-neutrino transitions in reactor antineutrino flux with Indium detector. Preprint INR-1155/2005
- C.Buck, I.Barabanov, O.Besida, L.Bezrukov, E.Yanovich et al., Development of In-loaded liquid scintillators for solar neutrino detectors. Nuclear Physics B (Proc.Suppl.)143 (2005) 487.
- I.Barabanov, O.Besida, C.Buck, C.M.Cattadori, E.Yanovich et al., Results of the LENS pilot experiment at Gran Sasso. Nuclear Physics B (Proc.Suppl.) 143 (2005) 559.

- 12.I.Barabanov, L.Bezrukov, C.Cattadori, E.Yanovich et al., Nd loaded liquid scintillator to search for ¹⁵⁰Nd neutrinoless double beta decay. Journal of Physics: Conference Series 136(2008) 042088
- 13.I.R.Barabanov,L.B.Bezrukov,C.Cattadori, E.A.Yanovich, et al., Updated results from the 3-ton Gd loaded liquid scintillator target after 2 years of data taking at LNGS. J.Phys.Conf.Ser. 120:052035, 2008.

14	,	,	,	., õ	
				Gd-	
				. 2.	
	2-		ö		, 2009, . 51,
N 3, c. 239	ó246				
15	, •	,	,	. õ	

ö, , 1228/2009,

2009.

16.I.Barabanov, L.Bezrukov, C.Cattadori, E.Yanovich et al., Characterization of a Nd-loaded organic scintillator for neutrinoless double beta decay search of ¹⁵⁰Nd with a 10-ton scale detector. arXiv: 0909.2152v1[physics.ins-det] 11 sep.2009. 17. . . , . . , . . ., -

, 2010, 4, .1-7.

18. I.R.Barabanov, L.B.Bezrukov, C.M. Cattadori, E.A.Yanovich et al.,ö Performances and stability of a 2.4 ton Gd organic liquid scintillator target for \tilde{v}_{e} detection. Journal of Instrumentation, 2010, 5, P04001.

.