На правах рукописи

Мушкаренков Александр Николаевич

ИССЛЕДОВАНИЕ ФОТОРОЖДЕНИЯ π И η МЕЗОНОВ НА ПРОТОНЕ И ДЕЙТРОНЕ В ОБЛАСТИ ЭНЕРГИЙ ГАММА-КВАНТОВ 700 \div 1500 МЭВ

01.04.16 – физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Москва-2007

Работа выполнена в лаборатории фотоядерных реакций Института ядерных исследований РАН

Научный руководитель: доктор физико-математических наук	В.Г. Недорезов (ИЯИ РАН)
Официальные оппоненты:	
доктор физико-математических наук	Ю.Г. Куденко (ИЯИ РАН)
доктор физико-математических наук	Л.А. Кондратюк (ГНЦ РФ ИТЭФ)

Ведущая организация:

НИИ ядерной физики им. Д.В. Скобельцина МГУ

Защита состоится « » _____ 2007 г. в _____ час. ____ мин. на заседании диссертационного совета Д 002.119.01 Института ядерных исследований РАН по адресу: г. Москва, проспект 60-летия Октября, 7а.

С диссертацией можно ознакомиться в библиотеке Института ядерных исследований РАН.

Автореферат разослан « » _____ 2007 г.

Учёный секретарь диссертационного совета кандидат физико-математических наук

Б.А. Тулупов

Общая характеристика работы

Актуальность работы

Изучение спектра возбуждённых состояний нуклона остаётся актуальной темой многих экспериментальных и теоретических исследований. Знание свойств нуклонных резонансов является ключом к пониманию структуры самого нуклона. Изучение процессов фоторождения мезонов — это наиболее подходящий инструмент в данном исследовании.

В диссертации представлены результаты исследований реакций $\gamma d \rightarrow \eta p(n), \ \gamma d \rightarrow \eta n(p), \ \gamma d \rightarrow \pi^0 d, \ \gamma p \rightarrow \pi^0 \pi^+ n$ в области энергий гаммаквантов $E_{\gamma} = 700 \div 1500$ МэВ. Так же, большое внимание уделяется изучению эффективности регистрации нейтронов в детекторе типа «кристаллболл» на основе сцинтиллятора BGO (Bi₄Ge₃O₁₂). Работа выполнена на установке GRAAL, расположенной в Европейском Центре Синхротронного Излучения (ESRF, Франция).

Интерес к изучению фоторождения *η*-мезона во многом обусловлен его изоскалярностью. Тот факт, что изоспин η -мезона I = 0, приводит к тому, что ηN системы могут образовывать связанные состояния только с изоспином I = 1/2. Уменьшение числа возможных резонансов упрощает интерпретацию данных и позволяет исследовать состояния плохо проявляющиеся при изучении πN каналов. Интерес к исследованию изоспиновой структуры амплитуд электромагнитных возбуждений приводит к необходимости получения данных о фоторождении η -мезона как на протоне, так и на нейтроне. При отсутствии мишеней из свободных нейтронов, дейтрон является лучшим выбором для исследования γn реакций. Интенсивные исследования данных реакций при энергиях $E_{\gamma} < 1000 \ M \rightarrow B$ выявили доминирование S₁₁(1535) резонанса. Этот результат достаточно хорошо объясняется в рамках мультипольного анализа, а так же с помощью изобарных моделей. Диапазон энергий ү-квантов был недавно расширен на область $E_{\gamma} > 1000 \ M_{\vartheta}B$. Коллаборацией TAPSCB@ELSA был представлен предварительный результат, указывающий на существование резонанса с массой 1675 *МэВ*, который даёт значительный вклад в случае рождения *η*-мезона на нейтроне, тогда как в случае протона этот вклад не столь значителен. В настоящее время данный результат является предметом интенсивных изучений. Таким образом, задача получения новых данных по рождению

η-мезонов на квазисвободных протоне и нейтроне при энергиях γ-квантов $E_{\gamma} = 700 \div 1500 \; M$ эВ является актуальной.

Ещё одной реакцией рассмотренной в данной работе является $\gamma p \rightarrow \pi^0 \pi^+ n$. Интерес к изучению двухпионного рождения обусловлен тем, что эти каналы вносят основной вклад в полное сечение при энергии γ -квантов выше 1 $\Gamma \ni B$. Так же, эти реакции дают возможность изучать различные каналы распада резонансов, такие как $N^* \rightarrow \rho n$ и $N^* \rightarrow \pi \Delta$. Результаты, полученные в Майнце при $E_{\gamma} \leq 820 \ M \ni B$, указывают на то, что значительный вклад в рождение $\pi^0 \pi^+$ дают каналы с промежуточным образованием $D_{13}(1520)$ резонанса и последующим его распадом на $\rho^+ n$. Изучение механизма такой реакции очень важно для объяснения подавления резонансной структуры полного сечения фотопоглощения на ядрах при $E_{\gamma} \geq 700 \ M \ni B$. Результаты, полученные в данной диссертационной работе расширяют до 1500 $M \ni B$ экспериментально исследованную область энергий для канала рождения $\pi^0 \pi^+$.

Задачи извлечения сечений реакций $\gamma d \rightarrow \eta n(p)$ и $\gamma p \rightarrow \pi^0 \pi^+ n$ требуют знания эффективности регистрации нейтронов, изучению которой в данной работе уделяется большое внимание. Эффективность регистрации связана с понятием функции отклика детектора, которая описывает амплитудное распределение импульсов на выходе детектора, в зависимости от типа падающей частицы и её энергии. Проблема определения функции отклика детектора для нейтронов обусловлена природой их взаимодействия с веществом. При попадании в детектор, нейтрон, при условии, что он обладает достаточной энергией, образует в веществе детектора адронный ливень (последовательность различных ядерных взаимодействий). Однозначно связать выделенную в таком адронном ливне энергию, с количеством фотонов, образующихся в сцинтилляторе, и амплитудой импульса сложно, так как она зависит от типов ядерных взаимодействий, которым сопровождался ливень. Эта же причина определяет невозможность однозначной связи амплитуды импульса с энергией нейтрона. Указанные проблемы детектирования нейтронов затрудняют так же и моделирование этого процесса, что явилось дополнительной мотивировкой к выполнению данной работы. Задача регистрации нейтронов изучалась ранее для детекторов, состоящих из кристаллов NaI и BaF₂. Экспериментальные данные для кристаллов BGO ограничены энергией $E_n \leq 45 M \partial B$. В данной работе

диапазон энергий нейтронов составляет $E_n = 80 \div 650 \ M$ эB, что так же говорит об актуальности работы.

Цели и задачи работы

Целью настоящей диссертационной работы является получение новых данных о процессах фоторождения π - и η -мезонов на протоне и дейтроне в области энергий гамма-квантов 700÷1500 МэВ. В работе были поставлены следующие задачи:

- разработать алгоритмы и программы анализа экспериментальных данных установки GRAAL по фоторождению π- и η-мезонов на протоне и дейтроне,
- определить эффективность регистрации нейтронов в сцинтилляционном детекторе типа «кристалл-болл» на основе сцинтиллятора BGO при различных энергетических порогах регистрации,
- измерить дифференциальные и полные сечения фоторождения *η*мезонов на квазисвободных протоне и нейтроне,
- измерить сечение когерентного фоторождения π^0 -мезонов на дейтроне в области $E_{\gamma} = 0.7 \div 1.1 \ \Gamma \ni B$,
- измерить сечение реакции $\gamma p \to \pi^0 \pi^+ n$ и получить распределения инвариантных масс для пар $\pi^+ \pi^0$, $n\pi^0$ и $n\pi^+$.

Научная новизна работы

Следующие результаты, представленные в диссертации, являются новыми:

• Измерена эффективность регистрации нейтронов с энергиями 80÷650 МэВ в детекторе типа «кристалл-болл», выполненном на основе сцинтиллятора BGO. Получен спектр амплитуд импульсов на выходе этого детектора, соответствующих регистрации нейтронов. Выявлено различие между экспериментальными и моделируемыми с использованием пакета GEANT3.21 спектрами.

- Измерены дифференциальные и полные сечения фоторождения ηмезонов на квазисвободных протоне и нейтроне в области энергий гамма-квантов E_γ = 0.7 ÷ 1.5 ГэВ. Показано, что с учётом фермидвижения угловые распределения дифференциальных сечений и полные сечения фоторождения η-мезонов на свободном и квазисвободном протоне совпадают. Обнаружено различие в угловых распределениях реакций фоторождения η-мезонов на квазисвободном протоне и нейтроне при энергиях E_γ ≲ 1.13 ГэВ. Сравнение экспериментальных данных на нейтроне с предсказаниями MAID показывают их плохое согласие. Тем не менее, модель MAID качественно объясняет соотношение между полными сечениями рождения η-мезонов на нейтроне и протоне и указывает на значительный вклад D₁₅(1675) резонанса в γn → ηn реакцию.
- Сделана оценка полного сечения когерентного фоторождения π⁰мезонов на дейтроне в области энергий E_γ = 0.7 ÷ 1.1 ГэВ.
- Измерено сечение реакции $\gamma p \to \pi^0 \pi^+ n$ при углах $\theta_{\pi^0}^{lab} \geq 20^\circ$ и энергиях $E_{\gamma} = 0.7 \div 1.5 \ \Gamma \ni B$. Проанализированы распределения для инвариантных масс пар $\pi^+ \pi^0$, $n\pi^0$ и $n\pi^+$. Данные указывают, что основной вклад в реакцию дают каналы с промежуточным образованием $D_{13}(1520)$ и $F_{15}(1680)$ резонансов: $\gamma p \to D_{13}(1520)/F_{15}(1680) \to \pi P_{33}(1232) \to \pi^0 \pi^+ n$. При этом значительного вклада каналов распада $D_{13}(1520)/F_{15}(1680) \to \rho^+ n$ выявлено не было.

Научная и практическая ценность работы

- Полученные экспериментально амплитудные спектры импульсов BGO-детектора, соответствующие регистрации нейтронов, являются необходимыми данными для определения функции световыхода кристаллов BGO. Знание данной функции требуется для корректного моделирования регистрации нейтронов. Вычисленная эффективность регистрации нейтронов в электромагнитном калориметре BGO даёт возможность исследовать реакции с регистрацией нейтронов в конечном состоянии.
- Полученные новые данные о процессах фоторождений *π* и *η* дополняют существующую базу данных по реакциям фоторождения мезонов.

Основные положения, выносимые на защиту

- Алгоритмы и программы анализа экспериментальных данных установки GRAAL по фоторождению π- и η-мезонов на протоне и дейтроне.
- 2. Эффективность регистрации нейтронов в сцинтилляционном детекторе типа «кристалл-болл» на основе BGO установки GRAAL при различных энергетических порогах регистрации.
- 3. Дифференциальные и полные сечения фоторождения η -мезонов на квазисвободных протоне и нейтроне при $E_{\gamma} = 0.7 \div 1.5 \ \Gamma \ni B$.
- Полное сечение когерентного фоторождения π⁰-мезонов на дейтроне в области энергий E_γ = 0.7 ÷ 1.1 ГэВ.
- 5. Сечение реакции $\gamma p \to \pi^0 \pi^+ n$ при энергиях $E_{\gamma} = 0.7 \div 1.5 \ \Gamma \ni B$, измеренное в области углов $\theta_{\pi^0}^{lab} \ge 20^{\circ}$.

Апробация работы

Результаты диссертации докладывались автором на следующих Российских и международных конференциях, школах и семинарах:

- 10-ый и 11-ый Международные семинары: «Электромагнитные взаимодействия ядер при малых и средних энергиях» (Москва, 2003 и 2006),
- 55-ая Национальная конференция по ядерной физике: «Передовой фронт в физике ядер» (С.-Петербург, 2005),
- 12 Европейская школа по физике экзотических пучков (Майнц, 2005),
- Школа-семинар молодых учёных «Фундаментальные взаимодействия и космология» (Москва-Троицк, 2002, 2005).

Результаты исследований также докладывались на научных семинарах ЛФЯР ИЯИ РАН (Москва).

Публикации

Основные результаты диссертации опубликованы в 6 печатных работах, в числе которых 3 статьи в ведущих международных рецензируемых журналах, 2 статьи в материалах международных научных семинаров и 1 статья в материалах национальной научной конференции. Список работ приведён в конце автореферата.

Структура и объём диссертации

Диссертация состоит из введения, четырёх глав и заключения. Она содержит 59 рисунков и 4 таблицы. Список цитируемой литературы включает 91 наименование. Общий объем диссертации составляет 110 страниц.

Содержание работы

Во введении формулируются задачи, решаемые в работе, а так же даётся обоснование их актуальности.

Первая глава представляет собой обзор литературы, посвящённый изучению фоторождения псевдоскалярных мезонов в области нуклонных резонансов. В §1 дано краткое теоретическое описание процессам фоторождения π и η -мезонов на нуклонах. Описаны основы мультипольного анализа. В §2 делается обзор экспериментальных данных по реакциям $\gamma N \to \pi N$, $\gamma N \to \eta N$ и $\gamma N \to \pi \pi N$.

Вторая глава посвящена описанию установки GRAAL (Рис. 1). Рассмотрены программы управления её работой и сбором данных, а так же программы моделирования и предварительной обработки данных. В §2.1 дано краткое описание накопителя электронов ESRF и характеристик пучка электронов. §2.2 посвящён описанию получения пучка γ-квантов методом обратного комптоновского рассеяния. Описывается кинематика обратного комптоновского рассеяния. Затем, дано описание системы мечения γ-квантов и детекторов монитора пучка. Характеристики мишени описываются в параграфе §2.3. Следующий параграф рассказывает о детекторе LAGRANγE установки GRAAL (см. Рис. 2). Последовательно рассматриваются основные элементы, составляющие детектор: электромагнитный калориметр BGO, детектор ливней, пропорциональные камеры и т.д. В §2.5

ма лазера, 3 — бериллиевое зеркало, Рис. 1. Установка GRAAL. Цифрами показаны: 1 4 коллиматоры, 5 – лазер, 2 очищающий магнит. - ОПТИЧЕСКАЯ СИСТЕ-

Рис. 2. Схема детектора LAGRAN γ E.

описывается система управления работой установки и организацией сбора данных. Рассмотрены основные триггеры записи событий. В §2.6 описывается организация анализа экспериментальных и моделированных данных. Описывается организация предварительной обработки данных, производимая при помощи программ DECODE и PREAN. Так же, рассмотрены программы LAGGEN и LAGDIG, выполняющие моделирование экспериментальной установки.

В третьей главе диссертации представлен анализ регистрации нейтронов в электромагнитном калориметре BGO, а так же в детекторе ливней. Для BGO калориметра получены экспериментальные и моделированные спектры амплитуд импульсов, соответствующих регистрации нейтронов с энергиями $E_n = 80 \div 650$ МэВ. Вычисляется эффективность регистрации нейтронов. Для детектора ливней представлена только моделированная эффективность регистрации.

В §3.1 описываются условия, при которых проводилось моделирование регистрации нейтронов. Обсуждаются условия отбора событий соответствующих регистрации нейтрона в моделировании. В §3.2 представлен анализ экспериментальной эффективности регистрации нейтронов в BGOдетекторе, используя реакцию $\gamma p \rightarrow \pi^+ n$. Описан алгоритм отбора событий, соответствующих реакции $\gamma p \rightarrow \pi^+ n$ с регистрацией нейтрона в BGOкалориметре и без его регистрации. В §3.3 представлены результаты анали-

Рис. 3. Экспериментальные (чёрные кружки) и моделированные (окружности) распределения амплитуд импульсов в кластере калориметра BGO для разных энергий нейтронов: (a) $E_n = 0.05 - 0.1$ ГэВ, (b) $E_n = 0.15 - 0.2$ ГэВ, (c) $E_n = 0.25 - 0.3$ ГэВ и (d) $E_n = 0.35 - 0.4$ ГэВ. Калибровка энергии соответствует эквивалентной энергии γ -квантов.

Рис. 4. Эффективность регистрации нейтронов. (а) — эксперимент и моделирование для BGO-калориметра при разных энергетических порогах кластеров; (б) — моделирование для детектора ливней при разных углах вылета нейтрона.

за регистрации нейтронов в BGO-калориметре. Обсуждаются полученные спектры амплитуд импульсов электромагнитного калориметра BGO при регистрации нейтронов (Рис. 3). Отмечается, что экспериментальные и моделируемые спектры имеют различия, причиной которого может являться не моделируемая функция световыхода кристаллов BGO. При этом, было обнаружено, что интегралы экспериментальных и моделированных амплитудных спектров совпадают, а включение дополнительных энергетических порогов приводит к их различию. Таким образом, чем выше энергетический порог, тем больше различие между экспериментальной и моделированной эффективностями регистрации нейтронов (Рис. 4а). Тем не менее, при низком пороге (2 МэВ) видимое различие наблюдается только при энергии нейтронов 80 МэВ, при более высоких энергиях это различие незначительно и можно говорить, что экспериментальная и моделированная эффективности совпадают. Для детектора ливней приводится моделированная эффективность регистрации нейтронов (Рис. 4б). Отмечается, что данная эффективность имеет зависимость от угла θ_n вылета нейтронов.

Четвёртая глава посвящена анализу реакций рождения π и η мезонов на протоне и дейтроне. В §4.1 представлена методика расчётов сечений реакций. Рассмотрен так же метод вычисления полной эффективности ре-

Рис. 5. Дифференциальные сечения фоторождения η -мезонов на квазисвободном протоне (белые кружки) и на квазисвободном нейтроне (чёрные кружки) в сравнении с расчётом модели ETA-MAID2001 (сплошная и пунктирная линии соответствуют реакциям $\gamma p \rightarrow \eta p$ и $\gamma n \rightarrow \eta n$), а так же с данными, полученными ранее в эксперименте CB@ELSA на свободном протоне (звёздочки).

гистрации реакций и её применения к экспериментальным данным.

В §4.2 описывается исследование фоторождения η-мезонов на квазисвободных протоне и нейтроне, где в качестве мишени используется дейтерий. Описывается отбор событий. Анализируется эффективность регистрации и аксептанс детектора для данных реакций. Вычисляются дифференциальные и полные сечения (Рис. 5 и 6). Отмечается, что сечения, полученные на квазисвободном протоне, хорошо согласуются с данными, полученными ранее на свободном протоне. Этот результат говорит о том, что ядерные эффекты (например, перерассеяние частиц в конечном состоянии), при использовании дейтрона в качестве мишени пренебрежимо малы, что в свою очередь, может говорить о возможности получения данных на свободном нейтроне, используя дейтрон, без искажений, обусловленных ядерными эффектами. Полученные сечения на квазисвободном протоне, так же хорошо согласуются с расчётами модели ЕТА-МАID2001 при энер-

Рис. 6. Полные сечения фоторождения η -мезонов на квазисвободном протоне и на квазисвободном нейтроне. Обозначения те же, что на Рис. 5. Показаны только статистические ошибки. Стрелка указывает положение резонанса $D_{15}(1675)$.

Рис. 7. Отношения полных сечений фоторождения η -мезонов на квазисвободном протоне и квазисвободном нейтроне. Чёрные кружки — результат, полученный в данной работе, чёрные треугольники — данные эксперимента TAPS@MAMI (г. Майнц, Германия) и белые треугольники — предварительные данные эксперимента TAPSCB@ELSA (г. Бонн, Германия). Указаны только статистические ошибки. Сплошная линия показывает расчёт полной модели ETA-MAID2001, пунктирная линия — расчёт ETA-MAID2001 без учёта резонанса $D_{15}(1675)$.

Рис. 8. Полное сечение когерентного фоторождения π⁰-мезонов на дейтроне, полученное в данной работе (чёрные кружки), в сравнении с результатом экспетимента TAPS@MAMI (белые кружки). Указаны только статистические ошибки.

гиях γ -квантов $E_{\gamma} \lesssim 1.25 \ \Gamma_{2}B$, тогда как при бо́льших энергиях наблюдается расхождение. Угловые распределения дифференциальных сечений на квазисвободных протоне и нейтроне различаются при энергиях гаммаквантов $E_{\gamma} \lesssim 1.13 \ \Gamma_{2}B$ и совпадают при больших энергиях. Вместе с этим, расчёты, выполненные моделью ETA-MAID2001, плохо описывают, сечения, полученные на квазисвободном нейтроне. Тем не менее, данная модель качественно объясняет соотношение между полными сечениями рождения η -мезонов на нейтроне и протоне и указывает на значительный вклад $D_{15}(1675)$ резонанса в $\gamma n \to \eta n$ реакции (Рис.7).

§4.3 посвящён анализу реакции когерентного фоторождения π^0 -мезонов на дейтроне в области энергий гамма-кантов $E_{\gamma} = 0.65 \div 1.1 \ \Gamma_{?}B$. Описывается алгоритм отбора событий. Делается оценка полного сечения. Основной проблемой в данном исследовании является малая величина сечения реакции $\gamma d \rightarrow \pi^0 d$ и недостаток статистических данных. Тем не менее, разработанный алгоритм позволил сделать оценку сечения, которая хорошо согласуется с данными, полученным в эксперименте TAPS@MAMI (г. Майнц, Германия) при энергиях $E_{\gamma} < 600 \ M_{?}B$ (Рис. 8).

В §4.4 представлен анализ реакции $\gamma p \to \pi^0 \pi^+ n$. Описывается отбор событий, соответствующих этому каналу. Большое внимание уделяется анализу аксептанса детектора LAGRAN γ E для данной реакции, а так же эффективности её регистрации. Анализируются распределения инвариантных масс для пар $\pi^+\pi^0$, π^+n и π^0n (Рис. 9, 10). Вычисляется сечение этой

Рис. 9. Распределение инвариантных масс для систем $\pi^0\pi^+$, π^0n и π^+n для разных диапазонов энергий E_{γ} . Чёрными кружками изображены экспериментальные данные, сплошная толстая кривая изображает распределение для фазового пространства, пунктирная толстая кривая изображает распределение соответствующие каналу $\gamma p \to \pi^+ \Delta^0 \to \pi^0 \pi^+ n$, тонкая сплошная кривая соответствует каналу $\gamma p \to \pi^0 \Delta^+ \to \pi^0 \pi^+ n$ и тонкая пунктирная кривая — $\gamma p \to \rho^+ n \to \pi^0 \pi^+ n$. Вертикальные пунктирные линии указывают положение масс ρ^+ (для распределений IM $(\pi^0\pi^+)$) и $\Delta(1232)$ (для распределений IM (π^0n) и IM (π^+n)).

Рис. 10. Продолжение Рис. 9.

Рис. 11. Сечение реакции $\gamma p \rightarrow \pi^0 \pi^+ n$, интегрированное в области углов $\theta_{\pi^0}^{lab} > 20^\circ$ (чёрные кружки) в сравнении с полным сечением этой реакции, полученным ранее в MAMI с детекторами DAPHNE и TAPS. Указаны только статистические ошибки.

реакции, интегрированное в области углов $\theta_{\pi^0}^{lab} > 20^\circ$ (Рис. 11). Отмечается, что полученный результат согласуется с данными, которые были получены ранее в Майнце при $E_{\gamma} \leq 820 \ M \Rightarrow B$ с детекторами TAPS и DAPHNE. Эти данные указывают, что основной вклад в реакцию дают каналы с промежуточным образованием $D_{13}(1520)$ резонанса: $\gamma p \rightarrow D_{13}(1520) \rightarrow \pi P_{33}(1232)/\rho^+n \rightarrow \pi^0\pi^+n$. Результат, полученный в данной диссертационной работе, указывает на схожий механизм протекания реакции и при более высоких энергиях E_{γ} , но через возбуждение резонанса $F_{15}(1680)$.

В **заключении** сформулированы основные результаты диссертационной работы:

1. Впервые измерена эффективность регистрации нейтронов с энергиями E_n = 80 ÷ 650 MэB в детекторе на основе сцинтиллятора BGO. Выявлено различие формы амплитудных спектров этого детектора, полученных в эксперименте и моделировании с использованием библиотек GEANT3.21. Данное различие приводит к тому, что экспериментальная и моделируемая эффективности регистрации нейтронов различаются в зависимости от энергетических порогов для кластеров кристаллов BGO, образующихся при регистрации нейтрона. Так, при пороге 2 MэB, различие между эффективностями заметно лишь при энергии нейтронов $E_n \simeq 80$ МэВ, а при более высоких энергиях эффективности совпадают. При пороге 20 МэВ, экспериментальная эффективность оказывается ниже на $20 \div 50\%$. Таким образом, показано, что корректный анализ реакций с регистрацией нейтрона в конечном состоянии должен производиться при минимальном энергетическом пороге.

- 2. Используя данные, полученные на дейтериевой мишени, были вычислены дифференциальные и полные сечения фоторождения *η*-мезонов на квазисвободных протоне и нейтроне в области энергий у-квантов $E_{\gamma} = 0.7 \div 1.5 \ \Gamma \not > B$. Установлено, что сечения, полученные на квазисвободном протоне, совпадают с сечениями, полученными на свободном протоне. Этот результат говорит о том, что ядерные эффекты при использовании дейтрона в качестве мишени пренебрежимо малы, что в свою очередь, может говорить о возможности получения данных на свободном нейтроне, используя дейтрон. Показано, что угловые распределение дифференциальных сечений на квазисвободных протоне и нейтроне различаются при энергиях гамма-квантов $E_\gamma \lesssim 1.13~\Gamma$ эВ и совпадают при больших энергиях. При этом дифференциальное сечение на квазисвободном протоне, хорошо согласуется с расчётами модели ЕТА-МАІD2001 при энергиях $E_{\gamma} \lesssim 1.25 \ \Gamma \not = B$, но отличается от него при бо́льших энергиях. Вместе с этим, расчёт ЕТА-МАІD2001 плохо согласуется с данными, полученными на квазисвободном нейтроне. Тем не менее, модель ETA-MAID2001 качественно объясняет зависимость от E_{γ} отношения полных сечений фоторождения η -мезонов на квазисвободных протоне и нейтроне. Установлено, что в области энергий $E_\gamma \lesssim 0.9~\Gamma$ эB отношение сечений $\sigma_n/\sigma_p \sim 0.5 \div 0.7,$ что совпадает с экспериментальными данными, полученными ранее в других экспериментах при этих энергиях. В области энергий $E_{\gamma}\simeq 1.05~\varGamma \!\!\!/ \ \!\!\!/ \mathcal{B}$ в отношении σ_n/σ_p наблюдается подъём до $\simeq 1.5$. Основываясь на модели ETA-MAID2001 было показано, что этот подъём связан с вкладом $D_{15}(1675)$ резонанса, вероятность возбуждения которого в γn реакции оказывается заметно больше, чем в γp .
- 3. Сделана оценка сечения когерентного фоторождения π^0 -мезонов на дейтроне в области энергий γ -кантов $E_{\gamma} = 0.65 \div 1.1 \ \Gamma_{??}B$. Установлено,

что полное сечение $\sigma_{\gamma d \to \pi^0 d}$ в этой области энергий спадает от ~ 0.5 до 0.1 мкб.

4. Впервые измерено сечение реакции $\gamma p \rightarrow \pi^0 \pi^+ n$ при энергиях $E_{\gamma} = 0.7 \div 1.5 \ \Gamma
i B$. Для различных диапазонов энергий E_{γ} проанализированы распределения инвариантных масс пар $\pi^+ \pi^0$, $\pi^+ n$ и $\pi^0 n$. Полученный результат указывает, что основной вклад в реакцию дают каналы с промежуточным образованием $D_{13}(1520)$ и $F_{15}(1680)$ резонансов ($\gamma p \rightarrow D_{13}(1520)/F_{15}(1680) \rightarrow \pi P_{33}(1232) \rightarrow \pi^0 \pi^+ n$), что совпадает с результатами, полученными ранне в Майнце при более низких энергиях. При этом, значительного вклада каналов распада $D_{13}(1520)/F_{15}(1680) \rightarrow \rho^+ n$ не обнаружено.

Основные результаты диссертации опубликованы в следующих работах:

- O. Bartalini, ..., A. Mushkarenkov et al., Neutron detection efficiency of BGO calorimeter at GRAAL // Nucl. Inst. and Meth. A V.562 (2006) P.85-91,
- 2. A. Mushkarenkov et al., η photoproduction from deuteron at $E_{\gamma} = 0.7 \div 1.5 \ GeV$ // Proceedings of the 11th International Seminar "Electromagnetic Interactions of Nuclei at Low and Medium Energies", Moscow: Institute for Nuclear Research RAS, September 21-24, 2006,
- A.N. Mushkarenkov, V.G. Nedorezov, Photoproduction of η-mesons on quais-free proton and neutron // LV National Conference on Nuclear Physics "Frontiers in the Physics of Nucleus", Saint-Petersburg, 2005,
- 4. A. Mushkarenkov et al., Coherent and quasi-free π^0 photoproduction from the deuteron // Proceedings of the 10th International Seminar "Electromagnetic Interactions of Nuclei at Low and Medium Energies", Moscow: Institute for Nuclear Research RAS, 2004, P.154-161,
- 5. O. Bartalini, ..., A. Mushkarenkov et al., Measurement of π⁰ photoproduction on the proton from 550 to 1500 MeV at GRAAL // Eur. Phys. J. A V.26 (2006) P.399-419,
- Y. Assafiri, ..., A. Mushkarenkov et al., Evidence for Nucleon-Resonanse Exitation in ω-meson Photoproduction // Phys. Rev. Lett. V.96 (2006) P.132003.